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Optimal Detection and Signaling in Fast Fading
Channels

Chit Lo

Todd K. Moon

Electrical and Computer Engineering Department
Utah State University
Logan, UT 84322-4120

Abstract -

We characterize optimal detection and signaling in terms of signal-to-noise for a fast or
frequency-selective channel when the autocorrelation function of the channel is known. Our
result characterizes the optimization problem as an eigenvalue/eigenfunction problem with
integral operators. For detection, the well-known matched filter and RAKE receivers are
limiting cases of our results. In addition, we provide a closed-form expression for the prob-
ability density and the cumulative probability function of a quadratic form for zero mean
complex Gaussian vectors, which is used to evaluate the probability of error of quadratic
receivers. Additionally, we provide a procedure that finds pairs of signals or filters for digital
communication over a fading channel. With the land-mobile fading channel, the signal/filter
pairs obtained with our procedure have a performance significantly better than that of the
traditional flat-top pulse and a raised cosine pulse in a PPM pair in terms of the probability
of error rate.
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Chapter 1

Introduction

1.1 General Background

The recent explosion in internet traffic proclaims the arrival of the Information Age [1].
This exploding internet traffic volume at the same time imposes a tremendous challenge
on communication engineers to meet the unlimited demand for information bandwidth,
both cable based and wireless [2]. On the other hand, this demand also brings us oppor-
tunities that we were not able to imagine before. A recent prediction asserts that “data’
communication will soon overtake “voice” communication (3], and future development
is heading toward personalization and mobilization [4]. A wireless “information super-
highway” is envisioned to fulfill the demand for multimedia networks with multi-service
requirements [5-7).

At present, systems of wireless communication, mainly cellular, are only able to pro-
vide low-speed data communication at error rates that are far from acceptable in wireless
network connections. This is because these systems have been established based on tech-
nology distant from theoretical limits [8]. One of the main reasons for this drawback in
technology is the hurdle of multipath fading channels 9, 10]. A very large proportion of
the data bits is used for signal integrity, either by extensive code correction or multiple
repetition. The cellular system we use today is designed more to circumvent the problems
imposed by the multipath fading phenomenon than actually to solve them. Even if there
are efforts to overcome the problems of multipath-fading channels, those techniques applied
are relatively primitive. A typical example is to repeatedly transmit a message through
a channel so that a correct reception of the message can be determined by a majority
vote (e.g., the United Kingdom total access communications system repeats its message

11 times [11]). Also, to avoid excessively rapid fluctuation of the received signal power
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caused by fading, a specific signaling rate is chosen according to the rate of fading so that
the received signal can be regarded as approximately constant over a data symbol interval
(i.e., the slow fading assumption). At the same time, the signaling rate is limited by severe
problems with inter-symbol interference (ISI), which is a frequency selective problem due
to multipath transmission [12]. However, there is an indication that high-speed reliable
communication is possible if the user is willing to optimize what the media could pro-
vide [13]. Because of this belief, considerable research effort has been devoted in the area
of multipath-fading channel communication for the past five decades [9, 14-22].

Usually multipath-fading channels are merely called fading channels [23]. However,
there are actually two basic degradations, i.e., multipath and deep fades. Multipath, which
results from reflections of the transmitted signal from reflective surfaces between the trans-
mitter and the receiver, causes delayed and scaled versions of signals to be superimposed
at the receiver. When the arrival times of the different rays are of the same order of mag-
nitude as the duration of the transmitted signals, successive signals are smeared together,
thus resulting in ISI. The span of the excess delay (i.e., the time between the first and last
received components during which the received signal power falls to some threshold level
below that of the strongest component) is directly related to the physical distortion of the
signal by the channel. This kind of distortion varies according to the difference in frequency
contain. Frequency selectiveness is the term we use when the distortion rate, the channel
gain, and the phase variation change significantly for a small variation in frequency. When
the arrival time difference is comparable to the period of the carrier frequency, deep fades
result. Deep fades are the phenomena that waves of different phases superimpose and
interfere constructively or destructively. This kind of interference may cause an extremely
low received signal power. Sometimes, this deviation of signal power can be more than
40 dB [9]! The distance between nulls is approximately 0.33 meter for 900 MHz cellular
systems. Deep fades can also result from a relative motion between the transmitter and the
receiver, which also results in superposition interference called the Doppler effect [24]. At

very high frequency (VHF) and ultra high frequency (UHF'), a vehicle moving at 50km/hr
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or 14 m/sec, will pass through several fades in a second [11]. Deep fades can also be
caused by the continuous physical changes of the channel media. When the interference
and fluctuation are much more rapid than the signaling rate, fast fading occurs.
Frequently, fading and multipath phenomena occur simultaneously. However, there
are situations, such as stationary communications, in which both the transmitter and the
receiver are not moving, where the main cause of degradation of communication quality
is the occurrence of multipath transmission. There are also situations like communication
between high-speed vehicles in an environment with no major reflective surfaces, where the
main cause of degradation is fading. To make the multipath-fading channel problem more
tractable, it is helpful to consider the multipath aspect or the fading aspect separately,

and this is the approach we use.

1.2 Literature Review

The history of fading channel studies can be roughly divided into three periods. The
first period spans from the early 1950’s to the late 1960’s. The driving force behind
this research was mainly the impetus for the development of long-distance troposcatter
communication for military use [14,15,25-27]. Tremendous effort was invested in collecting
real data to illustrate fading channels [28]. Some practical mathematical models, such
as uncorrelated scattering, were introduced [14,17]. The single most important idea for
combating fading phenomenon, “diversity,” was also formulated in this period [29-36]. The
beneficial effect of diversity vanishes when the channel has a very high correlation, i.e., no
fading [22]. A lot of work was also performed in the area of detection. However, systems
were generally not reliable enough for some computer communication applications. This
was the main reason why coding theory was introduced [19].

The second period spans from the early 1970’s to the mid 1980’s. During this period,
there was a drop in interest in fading channel communication, which might be due to
the high demand in research of wire and optical communications, where fading is not an
important issue. Even so, there was still continuous effort in the information and coding

theory aspects of fading channel research [37-40].
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The third period spans from the mid 1980’s to the present. During this period, there

has been a huge increase in scientific activity in fading channel research. Many new results

have been reported. The main driving force is the tremendous increase in demand for

personal mobile wireless communication, of which the following references specify aspects

of the research. The research in this period can be roughly divided into three categories,

i.e., implementation, characterization, and optimization.

1. Implementation:

Many new implementation schemes have been derived and reported. These ap-

* proaches can be further subdivided into three more classes: a) Diversity, b) Detection

and Estimation, and c¢) Combined Methods.

(a)

(b)

Diversity: The application of the idea of diversity exists in virtually every branch
of research on fading channels, either implicitly or explicitly. A basic motivation
for diversity is that under fairly general conditions, a channel affected by fading
can be transformed into an additive-white-Gaussian-noise (AWGN) channel by
increasing the branches of diversity [36,41-45)]. There are mainly three types of
diversity, i.e., time, space, and polarization diversity. Time diversity is usually
achieved by using some kind of rearrangement of the signaling process [46], or
by means of coding [35,41,47,48]. Space diversity can be achieved by using
multiple antennas at the transmitter and/or the receiver. Polarization diversity

is achieved by using an antenna or antennas with multiple polarizations [49-52].

Estimation and Detection: There are hybrid adoptions of classic techniques
of estimation and detection theory for fading situations, usually under specific
settings [53-56]. For example, there are applications of diversity on the design
of detector and estimator [36,57], and the usage of robust adaptive algorithms

in equalizer designs for fast fading channels [58-66].

Combined Methods: These methods include information theory and spatial
diversity [67], adaptive code-division-multiple-access (CDMA) signaling [68],

space-time modulation [49], and the applications of channel coding [69,70].




2. Characterization:

Tremendous effort has been devoted to the study of channel characterization, the

polishing of necessary mathematical tools, and the development of performance eval-

uation techniques. Furthermore, theoretical performance bounds have been derived,

especially for matched filter detectors.

(a)

(b)

(d)

Channel Characterization: Channel characterization is generally carried out
on an experimental basis. Measurement of transmitted and received signals
are made in typical environments in a controlled manner. Statistical models
are formulated and validated against the measured data and applied to system
analysis and simulation. Some researchers collect their own data and construct
their own channel models [71] while others study the existing experimental data
with their own models or improve previous models [72, 73]. The demand for
research in this topic has also inspired the development in specific mathematical
techniques [46,74-76] and new statistical models [77]. The characteristics and
effects of the channel on the various aspects of system performance (e.g., error
rate under specific settings, channel capacity, etc.) alone have also induced

much interest among researchers [78-81].

Simulation Techniques: In the design of a communication system, a system
designer may want to ensure that the performance of the communication link
is satisfactory. To ensure the system is performing up to the design specifica-
tions, a computer or hardware simulation is required. Therefore, many different

simulation schemes have been proposed for different settings (76,82, 83].

Performance Analyses: Performance analyses have been derived for uses in
nearly all common fading situations and standard communication techniques.

These analyses are often case-specific [42,43,45,46,51,74,84-92].

Performance Bounds: Different performance bounds that have been derived

now set guidelines to obtain optimal performance for different fading channels
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[93,94]. Among different performance bounds, the matched-filter-bound (MFB)

has received special interest from researchers [34,95-99]. The MFB characterizes
the detection capability of a single communication pulse transmitted in isolation
so that potential effects of ISI can be negligible. Although the MFB is a lower
bound over a communication channel that may not be practically realizable,
it is a common performance measurement for communication systems [96, 97].
There are reasons for saying MFB is an optimal performance bound. First,
it is assumed that all the information about the channel is known, which is
not feasible for a real fading channel. Second, transmitted pulses are separated
sufficiently so that no ISI occurs. In other words, the error rate is determined
by assuming only one data pulse is transmitted, which is also not physically

realistic.

3. Optimization:

A great amount of valuable work has gone into assessing the information-theoretic

limits of fading channels. Tremendous effort has been devoted to the derivation of

channel capacity and the search for optimal signals to achieve its optimal capacity.

(a)

Channel Capacity: The capacity with or without the knowledge of channel state
information has been studied [67,100,101], or with some further constraints, such
as the delay limited to real time voice and video communication [102]. Gold-
smith [100] and Caire [101] interpreted the optimal power adaptation as “water-
pouring” in time or frequency, while for multipath-fading channels, Telatar [103]
interpreted these as “peaky” in time or frequency. For multi-access usage of the
fading channel, there is a solution analogous to the “water-pouring” interpreta-
tion for the single-user case to maximize the overall capacity [104]. In general,
the capacity as well as the capacity-achieving distribution implies that there are

some underlying structures of optimal coding/signaling [105].

Optimal Power Allocation: With the assumption of block-fading additive-white-

Gaussian-noise (BF-AWGN) and the knowledge of channel states, an optimal
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power control for both the transmitter and the receiver is derived with or with-
out the presence of a transmission-delay constraint [106, 107]. A discrete ob-
servable, usually orthogonal projections of the tested signal onto a family of
specific functions, has been used to reduce the receiver complexity in the study
of the performance for difference classes of signaling [108]. Also, there are more

general results for signaling properties for fading channels [109,110].

1.3 Methodology

The research in this dissertation utilizes the idea of separating the multipath aspect
from the fading aspect of a fading channel in order to reduce the model complexity. The
goal of this dissertation is to characterize the optimal signal and detector of a fading chan-
nel, which may be either fast fading or slow fading, when its channel statistical properties
are known.

The word “optimal” used in this dissertation denotes maximized signal-to-noise-ratio
(SNR). Improved SNR is related to but not necessarily equivalent to improved error
rate [92]. Optimization of SNR does not necessarily mean optimization of the error rate.
Optimizing in terms of error rate is the ultimate goal for all communicators. It involves
sophisticated modeling of the entire communication system including the optimal detec-
tor corresponding to the autocorrelation function (which is a stochastic process itself) of
the fading channel. At the present stage of research, we do not try to tackle this prob-
lem, taking on instead the more tractable optimization of SNR. This is analogous to the
SNR-maximizing derivation of the conventional matched filter, which also happens to re-
sult in minimal bit error rate in binary-phase-shift-keying (BPSK) systems. In any event,
improvement in received SNR will result in an improvement in the bit error rate.

We first characterize optimal detectors, then study optimal signaling. Because of our
model setting, these two optimization problems are essentially the same mathematically,
which significantly reduces the difficulty of the derivation and understanding of the char-
acterization of the optimal-signal-filter-pair for fading channels. For the sake of clarity of

later discussion, we call this optimal-signal-filter-pair a consonant pair (CP).
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We use functional analysis techniques to derive the characteristics of the optimal
detector and signal in L£o.1' We then further analyze the properties of the optimal filters
and signals, and present some algorithms that help us to find these properties.

Without the assumption of slow fading, the matched filter is no longer necessarily
the optimal detector [111,112]. As a result, the SNR of the received signal will depend
strongly on the channel statistical properties, the corresponding transmitted function, and
the detection filter. Therefore, with proper functional analysis techniques, we can derive
some basic properties of the signal and filter pairs to maximize the SNR.

There are two main results from this research. First, maximizing the SNR of the
detected signal is a key factor to lowering the error rate in communication, which implies
a higher possible data rate, increased channel re-usability, smaller appliance, etc. Second,
a better characterization of the optimal signal enables us to have better resource manage-
ment, e.g., if we know that the support of the optimal signal is related to the support of
the autocorrelation function of the channel, we will not slow down our transmission rate

by using long signals.

1.4 Contributions to the Field of Knowledge
After an intensive literature search, we believe the following contributions to the field

of optimal detector and signaling in fading channels are original to this dissertation:

1. A characterization of the optimal detector for known signals in fading channels. We
find that the well known matched filter and RAKE receiver are limiting cases of our

result.

9. A characterization of the CP in terms of maximum SNR for given fading channels.
Not only is fading (multiplicative and multipath) considered as a channel effect, but

also the effect of synchronization uncertainty on the optimal signal/detector design.

1£2(R) is the collection of all Lebesgue measurable functions f : R = C, for which |f|? is Lebesgue
integrable, i.e., |f1> < co. In this dissertation, we use L2 to represent L2(R).

—00
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3. An iterative algorithm for finding CPs that can be used for communication through
fading channels. With land-mobile-fading channels, the signals obtained with our
procedure are demonstrated to have a performance significantly better than that
of the traditional flat-top pulse and raised cosine pulse in a PPM pair in terms of

probability of error rate at a comparable signaling rate.

4. A closed-form expression for the probability density function and the cumulative
distribution function of quadratic form, g = vEQv, where v is a compléx Gaussian
vector with E(v) = 0, and Q is a Hermitian matrix. The probability density function
and the cumulative distribution function are expressed in terms of the eigenvalues of
MQ, where M is the covariance matrix of v. The closed-form expression is applicable
to many general cases. In this dissertation, we apply the equation to the calculation of
the probability of error rate for quadratic receivers. As a corollary to this analysis, an
interesting partition of unity by sequences is presented. From the above cumulative
distribution function of the quadratic form of normal vectors, we are also able to

derive an expression of partition of unity which is shown to be very useful.

The results of this dissertation are primarily analytical, with the structure of the CPs
being developed. Nevertheless, the concepts derived herein have been implemented, and
a de‘scription of this implementation is provided. Also a modest set of computed results
is presented to demonstrate the nature of the solutions and the algorithms. While an
exhibitive demonstration is not provided, the tools described here can be used in a variety

of circumstances.

1.5 Dissertation Structure

In chapter 2, we illustrate the fading channel model that is commonly used. Following
this, we introduce the model which we have used in our research. In chapter 3, we discuss
the optimal detection of a given signal in fading channels. Then, we relate the optimal
signal to its optimal detection. In chapter 4, we develop some algorithms that we can use to

generate CPs. As we only characterize a single CP, while a realistic communication requires
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at least two different signals to represent “0” and “1”, in the last section of chapter 4, we
discuss a procedure to find two conjugate-consonant pairs which can be used for binary
transmission. In chapter 5, we derive a method to calculate the probability of error for our
channel model and compare the CPs obtained in our research to other traditional signals.
Next, we discuss the issues of implementing our algorithms with discrete samples in chapter
6. Results of the implementation are presented in chapter 7 along with observations and
discussions. We conclude this dissertation in chapter 8 with a list of topics for further

research.
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Chapter 2
Channel Models

2.1 Introduction

Fading channels were first modeled in the 1950s and 1960s as a large number of
“geatterers” located at random points within the propagation path [16,18]. This idea was
primarily applied to over-the-horizon (troposcatter) communications covering a wide range
of frequency bands. To reach beyond the horizon, clouds of particles in the troposphere
were used as reflectors for the radio waves. The differences in path length between the
large number of scattered waves give rise to Rayleigh fading if there is no dominant direct
component [27]. Mobile wireless systems of recent interest, which are mainly local and with
finite number of reflection paths, experience fading effects that are somewhat different
than those mentioned above. However, these early models are still quite useful to help
characterize fading effects that we are facing nowadays.

The groundwork of modeling fading channels was mathematically laid out by Price in
the mid 1950’s [14,15). For the following half century, there were tremendous contributions
to this field. In a recent survey paper written by Biglieri, Proakis, and Shamai, 549
citations reporting the state-of-the-art achievements in research on fading channels were
included [22]. Among those that are not included in their citations is a paper written
by Bello who introduced a simple way to model the fading phenomenon with the notion
of wide-sense stationary uncorrelated scattering (WSSUS) [17]. Uncorrelated scattering
means the attenuation and phase shift of the channel associated with different path delays

are not correlated.

2.2 Fading Channel Model
A widely accepted mathematical modeling of the fading channel can be found in

Proakis’s book [21]. A fading channel is viewed as a continuous time-varying filter with a
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baseband-equivalent impulse response of ¢(7;t), where c(.;.) is a complex valued function,

r is the delay in response and ¢ is the time variable. If a signal s(¢) is sent through this

channel with AWGN, we will have at the receiver side,’

r(t) = / o(ri8)s(t — 7)dr + n(t), (2.1)

where 7(t) is the received signal and n(t) is the AGWN.
Assuming c(r;t) is wide-sense stationary, the autocorrelation function of c(r;t) can
be defined as
o, 3 ) = S (s )elrait + A, (2.2)

With uncorrelated scattering, we have
1o s
$o(r1; A (11 — 1) = SE[C (T t)e(ma; ¢ + AD)]. (2.3)

Setting At = 0, the expression ¢¢(A7;0) in (2.3) is usually called the Multipath Inten-
sity profile or the Delay Power Spectrum of the fading channel. We further define Ty,
to be the length of time that ¢c(AT;0) is essentially nonzero, and call it the Multipath
Spread of the fading channel.

Taking the Fourier transform of the channel impulse response, we have
C(f;t) = /c(T;t)e_ﬂ”deT. (2.4)

The corresponding autocorrelation function, with WSSUS, is

1
- % //E[c*(Tl; t)e(ra;t + At))e/? N1 =127 dry dry
= //¢C(T].)At)5(7'1 — 72)6j27f(f1T1~f2¢2)dT1dT2

(2.5)
=/¢c(7'1;At)eﬂ"'(fl"fz)nd,rl

= /¢c(Tl;At)€_j2ﬂAfﬁdTl

= ¢o(Af; At)

IThroughout this work, integrals stated without limits are assumed to be over the interval (—o0, 00).
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Setting At = 0, we obtain ¢c(Af;0); this is the autocorrelation function in the frequency

variable. We define the length of the support of ¢c(Af;0) that is essentially nonzero as
(Af)c. Usually, (Af)c is denoted as the Coherence Bandwidth, which is a measure of
the frequency coherence of the fading channel. To illustrate this idea, we would imagine
a signal with a bandwidth less than (Af)c being transmitted through a fading channel.
Because all frequency components will be affected essentially the same by the channel,
this channel is said to be frequency-nonselective. However, if another signal with a band-
width larger than (Af)c is being transmitted through the same fading channel, different
frequency components will be affected in different ways by the channel. Then, the channel
is said to be frequency-selective. In this case, the signal can be severely distorted by the
channel. Another useful result due to the fact that ¢c(A7;0) and ¢c(Af;0) are Fourier
transform pairs is that

(Af)e = (2.6)

L
T

To study the time variation of the channel, we return to ¢c(Af; At) defined in (2.5).
By setting Af = 0, we obtain the autocorrelation function of the channel for each different
frequency component by time averaging. Now, the length of the support of ¢¢(0; At) that
is essentially nonzero is defined as (At)c, which is called the Coherence Time of the
fading channel. So, in a digital communication system, if the signaling period is shorter
than (At)c, we may assume that the channel is essentially constant for individual signals,
and the situation of slow fading occurs. On the other hand, if the signaling period is longer
than (At)c, we may no longer assume that the channel is constant for individual signals,
and fast fading occurs.

In practice, (At)c is very difficult to measure directly. So, a related function is
employed. This new function is called the scattering function of the fading channel. It is

defined as -
S(r;¢) = / / o (Af; At)e2TAT 27N gA £ AL, (2.7)

where 7 is the time delay, and ( is the Doppler frequency as the channel varies with time

(caused by physical motions of the media, the transmitter, and the receiver, etc). The
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scattering function of the channel provides us with a measure of the average power output
of the channel. When 7 = 0, the length of the support of 5(0;¢) that is essentially nonzero
is called the Doppler spread By of the fading channel. We have the following relationship

between the channel coherence time and the Doppler spread

(Ab)e ~ Elj;' 2.8)

The time variation autocorrelation function, ¢¢(0; At), can be obtained from S¢({) =
5(0;¢), and is called the Doppler power spectrum of the fading channel. Some of the

common spectra and autocorrelation functions are listed in Table 2.1 [9,84,92,112-114].

Table 2.1: Spectra and Autocorrelation Function of Fading Process.

Denotation Spectrum Sc(¢) | Autocorrelation Function Rg(7)
sin 2w Byt
1. Rectangular gé—d I¢] < Bg B
2. Gaussian K exp(%g;) /\/7By K exp[—(nBgr)?]
. K
3. Land Mobile m K Jy(2mByr)
. K
4. First-Order Butterworth B+ B K exp[—27By|T|]
K expl— 24l
5. Second-Order Butterworth ——5—4— [ W‘g| T]l . Balr|
1+163%; X(COS e + sin 7 )

Note: Jo(-) is the zero-order Bessel function of the first kind, and K is a constant.

2.3 Categories of Degradation
Different fading phenomena introduce different degradations in communication sys-

tems. These degradations are summarized in Table 2.2 [23].
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Table 2.2: Categories of Degradation According to Different Fading Phenomena.
Frequency-nonselective | Frequency-selective | Slow fading Fast fading
loss in SNR ISI distortion, low Doppler, | high Doppler,
pulse dispersion, loss in SNR PLL failure,
irreducible BER irreducible BER

2.4 Model for Frequency-Nonselective Fading Channels

Let us revisit (2.1), i.e.,

r(t) = /C('T; t)s(t — 7)dr + n(t).

By Parseval’s relation, we have

r(t) = / CUf;0)S(H)¥ Hdf +n(t). (2.9)
Assuming frequency nonselectiveness, we have C(f;t) = C(0;t), and

o) = [ CUsHSNSdf +ntt)
= C(0;%) / S(f)e2Ftdf + n(t) (2.10)
= C(0;t)s(t) + n(2).
The transfer function C(0;t) for a frequency-nonselective fading channel may be ex-

pressed as

C(0;t) = a(t) = a(t)e 00, (2.11)

where the random process a(t) represents the envelope, and the random process 6(t) rep-
resents the phase of the the transfer function. In this case, the channel is also called a
multiplicative fading channel. Note that a multiplicative channel can be both fast- and
slow-fading. For different fading channels, a(t) can acquire different statistical distribu-
tions, from which each different fading channels obtains its name. Among common distri-
butions for a(t) are the Rayleigh distribution, the Rician distribution, and the Nakagami
distributions [92].
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2.5 Model Used in This Dissertation

The approach that is employed in this dissertation for modeling the general fading
channel is first to assume frequency-nonselectiveness, then to introduce countably many
multiple paths when we want to study the frequency-selectiveness aspect of the fading
channel. This approach agrees with the assumption of independent fading paths put for-
ward by Bello [17]. Furthermore, this approach provides a model that is general enough
to represent most “real” fading channels that are used in practice. At the same time, the
model also allows us to separate the fading and multipath aspects of a fading channel and
deal with them separately.

Fig. 2.1 depicts the system that we are studying. It is a generic communication system
for fading channels with a correlation detector.

When we assume frequency-nonselectiveness, a fading channel becomes simply a mul-

tiplicative Gaussian channel, i.e., when s(t) is sent, we receive
r(t) = a(t)s(t) + n(t). (2.12)

Without loss of generality, we may assume a(t) has a unit variance, ie., E[a(t)a*(t)] —

E[a(t)]E[a*(t)] = 1. For a general multipath fading channel, we receive

r(t) =Y Lioi(t)s(t — ¢:) + n(t), (2.13)
....................................... n(t) h(t)
Lo T
s() ——w crit) (4 )= @ / r
transmitter channel receiver

Fig. 2.1: System model of a fading channel.
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where o;(t) has an unit variance, &; is the path gain for path s, and ¢; is its path delay.
The autocorrelation functions of a;(t) = pi(t) + jgi(t), where both p;(t) and g;(t) are real
random processes, is
Re; (7, ) =Efei(r) e (V)]
=E[(pi(n)pi(N) + ai(7)ai(N) = i(pi(T)a:(A) = qi(7)pi(N))] (2.14)
=E((pi(r)pi(N)] + Elgi(1)ai(M)]
where it is assumed that the real and imaginary parts are independent. The autocorrelation
Ry, (7, ) is real and symmetric about 7 and A.

When o;(t) is Rayleigh, i.e., p;(t) and g;(t) are zero mean Gaussian processes, and
when we further consider that the different fading paths are only caused by local reflections,
it is safe to say that the o;(¢) all have the same normalized statistical characteristics, i.e.,
we have for some autocorrelation function R4 (7, A) that Ry, (7,A) = R (7, A) for all 4. The
above simplification cannot be applied in general to other fading channels. For example,
if o4 (t) is Rician distributed, the directions of the dominant components are different for
each of the multiple paths, and hence the autocorrelation functions may be different. To
simplify the derivation, we will assume a(t) to be Rayleigh in this dissertation. However,
our discussion is readily extendible to other fading channels.

If we do not assume perfect synchronization when a known signal so(t) is transmitted,

the received signal at the output of the detector filter is

r= (5 Gaultsolt - ¢ - ) + n(Oh(e)

where p is a random delay with density function p(s). We assume throughout this work

that h(t) has unit energy, i.e., /h(t)h* (t) dt = 1.
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Chapter 3
Optimal Detection and Signaling

Up to the present, research about fading channels has been performed mostly under
the slow fading assumption, i.e., the channel is considered to be constant for up to a few
symbol times. Under this assumption, a fading channe] behaves as an AWGN channel
for each symbol. It is also generally accepted that matched filter detectors produce good
performance. However, when the slow fading assumption is lifted, the idea of optimal de-
tection becomes more complicated. Fast fading causes variations within a symbol interval,
so that the model applied in slow fading becomes inaccurate, and conventional matched
filter detectors become suboptimal. In this chapter, we characterize optimal detection and

signaling without the assumption of slow fading.

3.1 Optimal Detection

For a single-path frequency-nonselective fading channel with random amplitude func-
tion, c(t), when a known signal so(t) is transmitted in a Gaussian channel, the received
signal is

r(t) = a(t)so(t — u) +n(t), (3.1)

where 4 is a random delay with probability density function p(u) due to uncertainty in
the synchronization, and n(t) is AWGN with a power-spectral-density (PSD) No/2. For a

multipath fading channel, the received signal is

r(t) = Z&ai(t)so(t — ¢i — p) + (), (3.2)

where &; is the channel gain, and ¢; is the path delay for path 5. We would like to find the

optimal h(t), with unit energy / h(t)h*(t) dt = 1, that maximizes the received SNR.
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3.2 Characterization of Optimal Detectors

The received signal at the output of a linear detection filter can be presented as

= [1S ettt = b = + n(OIh(0) b (3)

with the corresponding signal and noise components at the output of the detection filter
being
= /Zfiai(t)so(t — ¢ — w)h(t) dt, and r, = /n(t)h(t) dt. (3.4)
i

Since h(t) has unit energy, we have

B(iral?) = 32 (35)
The variance for the signal part is
E(|rs*) =E[ / / (Z Eici(T)so(T — ¢ — Zg £(\)sh (A — ¢; — u))h*(X) dr d)]

_zz / / 6 Elos(r) i (Nso(r — ¢ — )53(A = 5 — wI(r)h* (M) dr dA.
(3.6)

Since a(t) and so(t) are independent, we have

E(r) =Y Z/ &85 Blas(T)o (W) Elso(r — ¢i — p)sg(X — ¢ — wh(r)R*(A) dr d.
ioJ
(3.7)
Because of the assumption that different paths are independent, we obtain

E(jrs|?) Z// |&:[? Elais(7) e (W] Elso (7 — ¢ — ) s5 (A= ¢i — w)]A(7)h*(A) dr dX. (3.8)

Defining

T;(7,A) = Elso(1 — ¢i — p)so(A — ¢i — )]
(3.9)
= [ solr = b = WsilA = b = w)ple) s,
(3.8) can be rewritten as
E(lrs|*) = Z / / &2 Ra (7, A\) Wi (1, A)h(T)h* (A) dr dA
p (3.10)

— [ [ Ralr MLl r, M3 ) i .
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Let
NEDI TR PN (3.11)
Then, the variance for the signal part may be presented as a functional of A.
E(Jrs[*) / Ra(r, AV (r, Wh(r)R* (A) dr dX
iy (3.12)

Note that both ¥(7,A) and Rqa(T, )\) are symmetric in 7 and A.
By applying the method of Lagrange multipliers to maximize F(h) under the con-

straint of H(h) = [ h(t)h*(t) dt = 1, we have the following Lagrangian function
J(h) = F(h) —vH(h), (3-13)

where 7 is the Lagrange multiplier. To find the extrema, we take the derivative with

respect to h (see Appendix A) of the Lagrangian and set it to zero, ie.,
d d d

d
ﬁﬁF(ho) = ’YEH(ho),

where ho(t) is an extremum of F'(h). From the example in Appendix A, we know that
dH (ho) dF (ho)

an ) dh
Ug (t) + j'UO (t)a

(3.14)

= h{(r). Now, we try to find (7). For e € R, and V € Ly, and ho(t) =

F((uo + €V) + juo) — F(ho)
/ / (r, AT, A) (10 + €V) + o) (r) (s + €V') — o) (N drd — F(ho)
- / R (r, \)T(r, M (o + €V) (7) (1o + V) (X) — (o + €V) (7)o (M)

+ jvo(7) (o + €V)(X) + vo(T)vo(A)} dr d — F(ho).
By neglecting those terms containing €2, (3.15) becomes

F((ug + €V) + jvo) — F(ho)
z/ Ro (7, N (7, A\ {uo (T)uo(X) + €V (T)uo(A) + eug(T)V(A) — juo(m)vo(N)
— §eV(T)vo(N) + jvo(T)uo(A) + jevo(T)V (X) + vo(7)vo(N)} dr dX = F(ho)

/ R (7 N)E(r, eV (7)o (A) + etso(T)V (A) = eV (r)0(X) + jevo(r)V (N} dr d.
(3.16)

(3.15)
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As both R, and ¥ are symmetric in 7 and A, (3.16) may be further simplified as

F((uo + €V) + jwo) — F(ho)

—c / / (r, VT (r, V) oY) + 10(N) — duo(N) +joe NIV () dTdd  (37)
=2¢ // Ro(T,A) Nug(A\)V(7) dr dA.
From Appendix A, we have
Qf-%ﬁl(r) =9 / R (r, \)B(r, Nuo(N) dA. (3.18)
Similarly,
ho) T) = Z/Ra('r, N T (7, A)vo(A) dA. (3.19)

From (3.18) and (3.19), we have

a (3.20)
/Ra(T, (1, \)hg(A) dA.
So, from (3.14),
i) = [ Balr, N VRGN (3.21)
Also,
E(|rs|?) =F(ho) = / Ro (1, Aho(T)R§(\) dT dX
(3.22)

= [hol)hi(r) dr =7

We can conclude that in order to maximize the SNR, v must be the largest eigenvalue of
the kernel Ro(7, \)¥(7,)), and h{(t) is the corresponding eigenfunction.

Assuming perfect synchronization, i.e., p(p) = 8(), it is interesting to point out that

for the case of a single nonfading path, i.e., Ra(7, ) = R (constant) for all 7 and A,

Yhy(r) = / Ra(r, Nso(r)55(\ho(X) dA
=s0(7) / Rsy(A)RE(N) dX (3.23)

=Cso(7),

where C € C. This is the familiar matched filter.
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On the other hand, for the case of nonfading multiple paths,

hitr) = e [ Rss = 6)ho(Y) Mol = 99

3.24
=ZC’1:30(T—¢¢), 529

which is the RAKE receiver [21]. The derivation presented above subsumes and generalizes

these important special cases.

3.3 Optimal Signaling

We would like to extend our discussion now to the study of how to characterize both
the transmitted signal s(t) and the detection filter h(t) so that for a given fading channel
with autocorrelation function Re(7, ) = E(a(r)a*())), the received SNR at the receiver
is maximized.

For a fading channel, c(7;t) whose statistical properties are known, when the signal

s(t) is sent, the received waveform can be represented as
r(t) = c(r;t) * s(t — 1) +n(t), (3.25)

where n(t) is an AWGN with power spectral density No/2. Consider the problem of

designing a filter h(t) matched to c(; t) * s(t), then shaping s(t) to obtain the maximum
SNR possible. That is, find

1) * s(®)]h(t)dt]”

ey ma | L0 S0

s(t) h(t) Ny
[1s@)2dt=1 | [|r(t)|Pdt=1

(3.26)

3.4 Characterization of Optimal Signaling for Single-Path Fading

We derive the CP first for single path fading with no synchronization error. This will
bring us better understanding of the properties of this optimization problem (3.26). We
would like to characterize the optimal s(¢) and h(t) so that for a given Ry (7, )), the SNR
at the receiver is maximized. We impose the constraint that both s(t) and h(t) have unit

energy,

G(s) = / s(t)s*(t)dt=1 and H(h) = / h(t)R* (t)dt = 1. (3.27)
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Without synchronization uncertainty, the received signal at the output of a detector filter
is
- / la(t)s(t) + n()IR() dt, | (3.28)

with the corresponding signal and noise components being

Ty = /a(t)s(t)h(t) dt, and 7, = /n(t)h(t) dt. (3.29)

Maximizing the SNR is equivalent to maximizing the ratio between the variance of rs
and r,. Because of (3.27), we have E(|ra|?) = No/2. So, what we really need to do is to

maximize the variance of g, which can be represented as the following functional
B(r,) =B [ atr)atrhr)a” ()" ()h* (drd
- / / Ela(r)a* (V]s(r)h(r)s* (VA" (N)drdA

/ / (7, N)s(7)R(r)s" () R* (\)drdA
def h)

Using the method of Lagrange multipliers to maximize F(s, h), i.e., we construct the

(3.30)

Lagrangian

J(s,h) = F(s,h) — 7G(s) - mH(h), (3.31)

and set the gradient of J(s,h) at (s0,ho) to be zero, where s, ho € Lo are the extreme

points in the domain of F. This gives

[as (so,ho>] [aa“F(so,ho)} [;%G(So)] [%H(ho):\
— Yo - =0, (3.32)
3xJ (50, o) 7 F (50, ho) £-G(s0) 2-H(ho)

which can be rearranged to

2 F(s0, ho) 2.G(s0) 2 H(ho)
=7 | , +m 5 . (3.33)
Z-F(s0, ho) 37 G(s0) a5 H(ho)
We have, from Appendix A, that

9 Hihy) =0, and 2-H(ho) = k. (3.34)

0 . O
—G(80) = S0» %G(so) =0, 35 3

Os
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Setting s(t) = z(t) + jy(t) and h(t) = u(t) + ju(t), we obtain

_6_ —_ _1_ aF(SOah’O) _ .aF(So,ho)
aSF(so,ho) =3 ( 52 I~y : (3.35)
and

9 1 (9F(s0,ho) .8F(s0,ho)

ahF(SO)hO) - 9 ( au J alu . (336)

Let € € R,V € Ly, we obtain the following derivative results.

F(((mﬂ + GV) + ij),hO) - F(So, h‘O)
=/ Ra(7, \)((z0 + €V) + 350) (T ho(7) ((z0 + €V) = o) (MAG(A) dr dA — F(s0, ho)

~ / / Ra(r, V[V (155 + €V (W) so(r)]ho(r)R3(N) dr dA

wy / Ra(r, \ho(r)R3(MRe(so()) dA V() dr,
(3.37)

which implies

BFo0la) 7y = / Ra(7, \)ho(r)h§(\)Re(s0(N)) d (8.38)

F(iE() + J(yO + EV)):h’O) - F(So, hO) _
= / / Ra (7, M) (2o + (o + €V))(T)ho(7)(z0 — 5(yo + €V))(NAG(A) dr dX — F(s0, ho)

~ / / Ro(r, MV ()55 () — eV (V) so(r))ho(r)R3(X) dr d

=2¢ // Ro (7, Mho(T)RG(A)Im(so(A)) dX V (r) dr,
(3.39)

which implies

aF(aSZ 2y =2 / Ra(7, Nho(1)h5 (A Im(s0(2) dA. (3.40)
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F(SO, ((UO -+ EV) + j’vo)) — F(So, ho)
- / / R (r, N)5o(7)((uo + €V7) + 5u0) (r)s(\) (o + €V) — Guo) (A) d dA — F(s0, ho)
~ / / Ry (r, N[V (D)5 (N) + eV (\ho(r)]so(r)s3(X) dr dA

—2¢ / / Ry (7, N)so(r)s(MRe(ho (X)) dA V(r) dr,
(3.41)

which implies

BF(S(), h’O)

o0 0)(r) ~ 2 / Ry (r, N)so(r)s5 (M Re(ho(A)) dX. (3.42)

F(so, (ug + j(vo + €V))) — F(s0, ko)
=/ Ra (T, A) (g + 5i(vo + €V)) (1) ho () (uo — j(vo + eV))(Wh§(X) dr dX — F(s0, ho)
~ // Ra(m, N [(eV (T)hg(A) — eV (A)ho(7))]s0(7)s5()) dr dA

—2¢ / R (, )so()ss (N Im(ho(N)) dA V(r) dr,

(3.43)
6—1—?—(58%1122(7) = 2/Ra(7', A)so(7)sg (M) Im(ho(X)) dA. (3.44)
Combining the results from (3.34),(3.38), (3.40),(3.42), and (3.44), we obtain
2 Plso,ho) = ho(r) [ Ra(r V55 (A0 dA = ho(r)E(7), (3.49)
and
%F(so,ho) = So(’T)/Ra('T, N)sg(A)hg(X) dA. (3.46)
So, (3.33) implies
{L(T)ho(T)] {’7085(7)}
= . (3.47)
L(7)s0(7) Y1ho(7)

From (3.47), we have

L(r)ho(7)s0(7) = Yomih5(7)s0(7), (3.48)




Which further implies

|L2(7)|1ho(T)lIso ()] = lyom[1hg (T)llso (7)]-

But
lho(r)| = [h5(7)] and  |so(7)| = [so(7)],
so, we have

n
Yo

() = VFon]  and ISO(T)|=(

‘Because of (3.27), we must have

ol = Im|  so that |so(r)| = [Ro(7)]-

That means at the extrema of F(s, k), s(t) and h(t) must be similar in magnitude.

In addition, We have the following three observations:

1. From (3.47), we can observe that L(7), so(7), and ho(7) have the same zeros.

2. From (3.47) and (3.30), we have

F(So,ho) =-/L(}\)So(>\)h0(>\)d>\

_ / Jhom] se(N)si(N) dr = /el

) lho(7)]-
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(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

That means the SNR of the CP is determined by the square root of the product of

the Lagrange multipliers.

3. Let {¢x} be the set of eigenfunctions of the symmetric kernel R,, with corresponding

eigenvalues {xy},

kde(r) = / Ra (7, )é(Y) dA.

(3.54)

Assume that the eigenvalues are distinct for different k. Then from Tricomi [115,

Chapter 3],
(Phs Pk) = /¢h(7')¢k(7')d’r =0 if h#k.

and, span({$x}) = L2(a,b), with (a,b) being the support of Rq.

(3.55)
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Now, let g(A) = s5(\h§(A) = 22 ardr(A), then

L(r) = / Ra(r, )g(\)dA

(3.56)
=/Ra(r, N> ardr(Ndr = > axkndi(T)-

Because ¢ are, orthogonal and sy are distinct, we should be able to characterize
ar so that |L(7)| = constant. That means we are able to find f (), and in turn the
product s5(A\)h§(\). Now, because of (3.52), we may determine so()) and ho(X) up

to complex conjugate pairs.




28

Chapter 4

Tterative Algorithms for Finding Solutions

The process of finding CPs s(t) and h(t) directly may be prohibitively difficult. In
this chapter, we present iterative algorithms for finding these CPs. From the fact that the

received signal component is
r= / a(t)s(t)h(t) dt, (4.1)

which is symmetric in s(t) and h(t), if we are able to characterize h(t) that maximizes the
SNR for a given s(t), we are also able to characterize s(t) that maximizes the SNR for a

given h(t).

4.1 TIterative Algorithms
Assume that the detection filter is ho(t), when s(t) is transmitted. Then the received

signal at the output of ho(t) is

= [ ottt — 60+ nlehole+ ) (42)
and the signal and noise components are
= [ Sttt - ginots + 1) dt (43)
and
ry = / n(t)ho(t + ) dt. (4.4)

Again, we have E(|rn|?) = No/2. The variance for the signal part is

E(lrs|*) =E // Z&az(f)s (T — ¢i))ho(T + 1) Zg “(A)s* (A = ¢;))he(A + p) d7 dA]

-3 / [ 65 latryos Who(r + S+ plstr = 615" ds) dr &

(4.5)
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As a(t) and sp(t) are independent, (4.5) becomes

B = 33 [ [ & BlestrIas IBlra(r + mASO -+ )l = 65" = ) dr
(4.6)

Then, the assumption of independent paths gives

E(rs)) = Z// |62 El0i(1) 03 (V] Eho (7 +p)hg(A+ )]s (7 — ¢i)s™ (A= ¢i) dr dX. (4.7)

Defining
T(r,X) =Elho(r + p)h§(A+ )]
= [ ot + WSO+ )5l . “
Then (4.6) can be rewritten as
Br) =% [ [ 162 Ratr N N7 = 972 = 60 dr
/ / Ra(T = ¢is A — @){Z 2T (7 + di A+ ¢3)}s(7)s*(A) dr d). 9
Defining
O, A) = >_I&GIPYT(T + ¢, A + ¢4)).- (4.10)
Again, we have a functional expressior; of the variance for the signal part.
E(r|?) = / / Ro(r, NO(r, \)s(r)s™ (A) dr d a

We use the method of Lagrange multipliers to derive s(t) that maximizes F(s) under the
constraint of G(s) = [ s%(t) dt = 1 by setting

dF G
o) _ 8 o) w1

where sg € L5 is the extreme point in the domain of F.
For ¢ € R,V € L with s(t) = z(t) + jy(t), we have
F((zo + €V) + jyo) — F(s0)

- / Ra(r, MO, N)((z0 + €V) + ) (r) (@0 + €V) — jy)(N)drdA — F(so)
(4.13)
// Ra(T,\)O(1, \){eV (1) so(A) + eV(N)so(7)} dT dA
—9 / / (7, 0)0(r, \Re(so(A)) dA V(r)dr
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both R, and © are symmetric in 7 and A, and

F(zo + j(yo +€V)) = F(s0)

/ / (O \) (o + iy + V) () (o — iy + €V))(N\drdA — F(so)

(4.14)
< [ [ Rar 00U NGleV ()55 — eV Nso(r)]} dr i
—2 / / Ro(r, NO(r, \JIm(so(})) dA V(7)dr.
That is,
- / Ro(r, NO(r, \)s() dA. (4.15)

Equation (4.15) and (4.12) imply
yst(r / Ro(7, \O(r, Nsy(A) dA. (4.16)
Additionally,
E(|rs]?) =F(s0) / Ro(1,X)O(7, X)so(T)sg(A) dr dA

= [ 1s0(r)si(r) ar (@17
=7.
Thus to maximize the SNR, we set y to be the largest eigenvalue of the kernel Rq (7, )O(, A)
and set s}(t) to be the corresponding eigenfunction.
By combining the results from (3.22) and (4.17), we obtain an algorithm to find the
CP for a multipath fading channel. That is, we iteratively fix the signal function s(t) and
the detector function h(t), then evaluate for the corresponding optimal filter function hq (1)

and signal function so(t). This is summarized in the following algorithm.

Algorithm 1 1. Randomly select an initial function so(t)-

2. Set ho(t) so that
oks(r) = [ Ralr, (R )B() d, (4.15)
where o is the largest eigenvalue in magnitude of the kernel Rq (1, \)¥(7,A), with
(1, \) = 3, [GIPE[so(r — ¢i)s5(A — ¢i)]). Then h§(t) is the eigenfunction corre-

sponding to Yo-
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3. Set s1(t) so that for the ho(t) in the previous step,

s5(r) = / Ral(r, N)O(r, N)s3(Y) d, (4.19)

where 1 is the largest eigenvalue of the kernel Rq(7,\)O(7,]), with ©(1,)) =
S |&IElho (T + ¢i)hg (A + ¢i)]). Then so(t) is the corresponding eigenfunction.

4. Repeat step 2 to step 4 a sufficient number of times.

When we try this algorithm with discrete samples of R, s(t), and h(t) with the
assumption of perfect synchronization using Matlab, we find that |s(t)}? and |A(t)|? both
approach §(t). This actually makes sense, because when there is uncertainty in the channel,
one would like to transmit information through that channel in as short a time as possible
to reduce the uncertainty in the received signal.

Analogous to the characterization of the CP for multiplicative channels which is in
the time domain, we may derive the same arguments for frequency selective channels in
the frequency domain. This amounts to having a multiplicative factor in the frequency
domain. In this case, we will end up with a CP as § functions in the frequency domain.
This agrees with the observation as pointed out by Biglieri [22, p-2636] that “... some recent
insights into the peaky nature of capacity-achieving signaling in the realm of broadband
time-varying channels....” In addition, a well known capacity-achieving signaling method
that attracted much attention is frequency shift keying (FSK), which is “peaky” in the

frequency domain.

4.2 Convergence

The precise conditions for which Algorithm 1 converges are unknown. From our expe-
rience in implementing this algorithm with discrete approximations, it converges most of
the time, at least in the cases when “exact” eigendecompositions are used. On the other
hand, proving the monotonic increase of the largest eigenvalue through consecutive itera-
tion of Algorithm 1 for the case of single path fading with no synchronization uncertainty

is relatively easy.
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Theorem 1 The sequence of the largest eigenvalue generated through iterations of Algo-
rithm 1 is monotonically increasing for single path fading channels with no synchronization

uncertainty.

Proof:

For single path fading with no synchronization uncertainty, (4.18) becomes

10h3(7) = [ Ralr, Nso(r)ss M) d (4.20)
Also, (4.19) becomes

155(0) = [ Ralr, Mho(rB5(N55() d (4.21)

Considering that (4.20) and (4.21) are repeated consecutively by iterative Algorithm 1, we

may consolidate these two expressions into one, i.e.,

Ml (7) = / Ra(7, g1 (r) g5 Vi (V) d, (4.22)

where 7 is the largest eigenvalue for the kth iteration, and g replaces s and h alternatively.

Now, we have from (4.22) and (3.27) that

Ve = / gk(7)gk(7) d7
= [ [ Ratr N (r)gi1 MarrIgi () d )
> [ [ Ralr Nois(r)gi 1 (Ngicalrlgi-o(3) d dr
=Yp-1-
This completes the proof.
We are interested in finding CPs that maximize the SNR, and the SNR is related to

the largest eigenvalue. So, the variation of the largest eigenvalue through the iteration can

serve as an indicator of the progress of the algorithm.
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4.3 Introduction of Frequency Constraints

From section 4.1, we found that CPs of single path fading channels with no syn-
chronization uncertainty are § distributions. However, é distributions are not practical
signaling waveforms. One possible approach for designing practical CPs that are “opti-
mal” yet producible is to introduce frequency restrictions to s(t) and/or A(t). In addition
to requiring s(¢) and h(t) to be unit powered, we impose restrictions on the frequency
spread of s(t) and/or h(t). Let S(f) = F(s(t)) and H(f) = F(h(t)) denote the Fourier
transforms. We introduce the functional W(s) and W (h) as measures of the energy of

s(t) and h(t), respectively in the frequency range (—f, f)Hz. Specifically, we let

/ S(n)S*(n
= [ mGhsemis ) dn
=2f / [s(t) * sinc(2n ft)]s*(t) dt (4.24)

—2f/ s*(t) / s(t)sinc(2mf(t — 7)) d7 dt
=2f /_oo /_oo sinc(2wf (T — A))s(7)s*(A) dr dA,

and similarly

f
Walh) = / H(P)H*(£) df
(4.25)
—2f/ / sinc(2r £ (r — A\))A(r)h*(N) dr dA.

We reconstruct the Lagrangian in (3.14) and (4.12)

2 F(s0) BW,(s0) + & Wh(ho) 2.G(s0) 2 H(ho)
-8, +B1 =], |, . (4.26)
FEF(hO) ahW (So) + ahWh(hO) -B—G( ) mH(ho)
where 8 € [0,1] is a weighing factor between the SNR and frequency containment. As

Ws(s) is independent of h, we have —B%Ws(so) = 0. Again, let s(t) = z(t) + jy(t), then
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evaluate

((zo + €V) + jy0) — Ws(s0)
=2f //smc @rf(r = N)((zo + €V) + jyo) (1) ((zo + €V) — 5y)(A) dA dr — Wi (s0)
z2fe//smc @7 f (1T — X)) [so(T)V(A) + sg(NV (1)} dA dr

=4fe//sinc(21rf(7 — A))Re(so(N)V () dA dr,
(4.27)

and

Ws(zo + 5(yo + €V)) — Ws(s0)
<oy [ [ simeeni(r = Mo+ ian + V)))(zo ~sly+ V) dh dr = Wi(en)
~afe / / sinc(2r £ (r = SV () — so(r)V(W)] dA dr
_4fe / / sinc(2r f(r — A))Im(so(\)V (7) d dr.

(4.28)
We have
8 3 . .
EEWS(SO) = 2f/smc(27rf(¢ —A))sg(A) d\ = K(7). (4.29)
Similarly, we have —gs—Wh(ho) =0, and
%Wh(ho) = of / sinc(2r f(r — \)h3(\) dA = M(7). (4.30)
~ As a result, (4.26) becomes _
[(1 — B)  Ra(r, NO(7, N)s§(X) dA+ BK(7) | wsa(ﬂ} s
— B) [ Ralr, NU(r, DRSO dA+ BM ()| |mhd(r)| |

If we use the iterative approach, we have the following algorithm:
Algorithm 2 1. Randomly select an initial function so(t).
2. Set ho(t) so that
Tihy(T) = /[(1 — B)Ra (7, N I(7, \) + 28f sinc(2r f (T — A)]hg(N) dX,  (4.32)

~1 is the largest eigenvalue of the kernel [(1 — B)Ra(7,\)¥ (1, A) +2B8f sinc(27 f (1 —

)], while hi(t) is the corresponding eigenfunction.
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3. Set so(t) so that for ho(t) from the last step,

Yosp(T) = /[(1 — B)Ro (1, \)O(7, A) + 28§ sinc(2x f (T — X))]sg(A) dA, (4.33)

40 is the largest eigenvalue in of the kernel [(1—B)Rq(7,X)O(T, X)+2Bf sinc(2m f (T —

)] while s§(t) is the corresponding eigenfunction.
4. Repeat steps 2, 3 and 4 a sufficient number of times.

Now, Algorithm 1 is a special case of Algorithm 2.

4.4 Signal Sets

To communicate over a fast fading channel whose amplitude may change sign in-
stantly, amplitude and phase modulation are inappropriate, and something akin to orthog-
onal signaling is necessary. We must therefore find at least two sets of signal/filter pairs
(so(t), ho(t)) and (s1(t), h1(t)), such that under the channel influence c(t), si(t) and h;(?)
have a minimal correlation for ¢ # 7. This minimal correlation criterion may be fulfilled by
a direction application of the CPs generated with Algorithm 2 in pulse-position modulation
(PPM). Another more general approach requires an extension to Algorithm 2.

From Algorithm 2, we know that the minimum correlation between h;(t) and s;(t)
can be obtained by setting h;(t) to be the eigenfunction corresponding to the smallest
eigenvalue while we generate h;(t) for given s;(t), at the same time setting s;(t) to be the
eigenfunction corresponding to the smallest eigenvalue while we generate si(t) for given
h;(t). However, the kernel must be changed to enforce frequency containment. So, while
finding the eigenfunctions corresponding to the smallest eigenvalues, we use the kernel of
the inverse operator (Z[-], Appendix B) of (4.29) and (4.30) in place of 2f sinc(27f(7 — X))
in (4.31) for frequency containment.

We suggest the following procedure: Given a transmitted signal so(t), let the cor-
responding filter hg(t) be the eigenfunction having largest eigenvalue of the kernel (1 —
B)Ra (7, \) (T, A) + 2Bf sinc(2nf(7 — X)) as defined before. At the same time, set k1 (?)

to be the eigenfunction with smallest eigenvalue of the kernel (1 — B)Rq (7, A)¥(7, ) +
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BI[2f sinc(27 f(T — A))]. Similarly, given a detection filter ho(t), we let the corresponding

signal §o(t) be the eigenfunction having largest eigenvalue of kernel (1—8) Ry (7, A\)®(7, )+
26f sinc(2wf(r — A)). At the same time, set 51(t) to be the eigenfunction with small-
est eigenvalue of the kernel (1 — B)Rq(7,A)®(7, ) + BI[2f sinc(2nf(T — A))]. Use the
same method to obtain 81(t), hi(t), 50(t), and ho(t). This procedure will be carried
out repeatedly: for each new iteration, set so(t) = 30(t) + 30(¢), s1(t) = 51(¢) + 51(2),
ho(t) = ho(t) + ho(t), and hy(t) = hi(t) + hi(t), then normalize these functions to unit

energy. The procedure is summarized in Fig. 4.1.

so(t) > ’}0(“ . — - () =
‘ ho(t) + ho(t) ‘ 30(t) + 50(?)

hi(t) = ‘ s1(t) =
su(t) P () + Fa(t) > 50 + 0

Fig. 4.1: Procedure for generating signal/filter pairs.

In the above procedure, so(t) and ho(t) form a CP, while s1(¢) and h;(¢) form another
CP. Further, the correlation between so(t) and h;(t), and that between s;(t) and ho(t) are
small. We call CPs with minimal correlation as conjugate-consonant pairs (CCPs).

Due to the averaging in the generation process of the signal/filter pairs, the CCPs vary
a lot, both with the waveforms and the SNR in terms of the largest eigenvalue. However,

during the process, we come across many “good” pairs which have high SNR.
Algorithm 3 1. Randomly select initial functions so(t) and si(t).
2. Set hgo(t) so that
Yoohgo(T) = /[(1 — B)YRa (1, \) (T, A) + 28 sinc(2n f (7 — X)) ]hge (A) dX, (4.34)

Yoo is the largest eigenvalue of the kernel [(1— B)Rq (7, \)Wo (7, A) + 2B f sinc(2n f (7 -

)], while hgy(t) is the corresponding eigenfunction.
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. Set hg1 so that

€othor(7) = / [(1 = B)Ra(r, \)¥o (7, X) + BL[2f sinc(2rf (T — A))Ihg1 (A) d, (4.35)

¢11 is the smallest eigenvalue of the kernel [(1~B)Ra (7, \)¥o (7, \)+BI[2f sinc(2n f (1—

M)]], while h}, (¢) is the corresponding eigenfunction.

. Set hy1(t) so that

b1y (7) = / [(1 = B)Ra(r, )1 (7, X) + 26 sinc(27f (1 — X))]hip(}) dA,  (4.36)

~11 is the largest eigenvalue of the kernel [(1—B)Ra(7, \)¥1(7, A) +28f sinc(2n f (7 —

A)], while k3, (t) is the corresponding eigenfunction.
. hyp so that
€uohio(r) = [ 10 = B)Ralr NTa(r, ) + BT sinc(ar (r — N)Kio (V) , (437)

€10 s the smallest eigenvalue of the kernel [(1—B) Ra (7, \)¥1(T, \)+BZ[2f sinc(2n f (7—

M), while k%, (t) is the corresponding eigenfunction.

. Find the average, i.e.,

ho(t) = hoo(t) + hio(2), (4.38)

and

B () = ho1 (£) + hir (). (4.39)
. Normalize ho(t) and hy(t).

. Set soo(t) so that

sonsia(r) = [~ B)Ralr, NOo(r, ) + 26 sinc(2nf (r = WlsioX) 4, (440

oo is the largest eigenvalue of the kernel [(1—B)Ra (7, A)@o(T, A) +2Bf sinc(2r f (7 -

\)], while s§o(t) is the corresponding eigenfunction.
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Set sg1 so that

éo1so1(T) = /[(1 — B)Ra(1,A)O0 (7, A) + BZ[2f sinc(2m f (T — A))]]sp1 (A) dA, (4.41)

€11 is the smallest eigenvalue of the kernel [(1—B) Ry (7, A)©o (7, \)+BIL[2f sinc(2w f (7~

)], while s§,(t) is the corresponding eigenfunction.
Set s11(t) so that
sty (7) = /[(1 = B)Ra(1,A)01(1, A) + 2Bf sinc(2r f (1 — A))]s10(R) dA, (4.42)

711 5 the largest eigenvalue of the kernel [(1— B)Rq (7, N)O1 (7, A) + 26 f sinc(2n f (1 —

A))], while s3,(t) is the corresponding eigenfunction.
$10 so that
§10870(7) = / [(1 = B)Ra(r,\)©1(7, A) + BL[2f sinc(2m f (1 — A))]]s10(A) dA, (4:43)

&10 is the smallest eigenvalue of the kernel [(1—B)Rqa(7, A)O1 (1, \)+BZL(2f sinc(2n f (7—

M), while s1,(t) is the corresponding eigenfunction.

Find the average, i.e.,

s0(t) = so0(t) + s10 (t), (4.44)
and

s1(t) = so1(t) + s11(2). (4.45)
Normalize so(t) and s1(t).

Repeat steps 2 to 13 a sufficient number of times. Save those CCPs with high SNR

along the iteration.
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Chapter 5
The Study of Probability of Error

5.1 Introduction

In conjunction with the algorithms suggested in the previous chapter, we would like
to develop a method to evaluate the performance of the derived CPs in terms of SNR
versus probability of error, P(e). So, we may compare the performance between the CPs
generated through those procedures in chapter 4 and other traditional waveforms.

Up to this point, we have not imposed any specification for the fading process af(t),
so the principles we derived can be applied to general fading channels. However, for
the following derivation, we will assume the fading process is a stationary band-limited
Gaussian process to facilitate our development. The result we obtain will be applicable to

Rayleigh fading channels, which are the most common fading channel models.

5.2 Quadratic Forms of Complex Normal Vectors
Let {vo,v1,*-- ,un—-1} be complex random variables with real and imaginary parts,

Vg = Ty, + JYk, which are normally distributed and satisfy the following relationships:

El(zi — 2:)(zj — %3)] = El(yi — 9:)(y; — 7)] (5.1)
and
E((z; — %:)(y; — 95)] = —El(z; — %;)(vi — %)), (5.2)

where Z; = E(z) and §x = E(yx). Define the complex normal vector v as

Vo
v :
; (5.3)
UN-1

with mean E(v) = 0, and covariance M = E[vvf]. A quadratic form of v is defined as

g=vQv, (5.4)
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where Q is any Hermitian symmetric matrix.

According to Turin [116], the probability density function of g, p(g), has a character-
istic function
Moo
t) = —_— 5.5
where g are the eigenvalues of M Q. To simplify our development, we assume that all g
are distinct.! Since gr = 0 does not affect ®(t), we assume that all the eigenvalues are
nonzero.

The probability density function of g is

1 [ .
po) =5 [ e@)emp(=ite) t, 5.7)
0 —00
which can be evaluated by using the residue theorem,
1 .
p(9) =5 / ®(2) exp(—jzg) dz
T Jc

(5.8)
=j Z{residues enclosed in the counterclockwise contour},

where C is a contour in the complex plane containing the real axis. The integrand in (5.8)

can be rearranged as

(z) exp(—j29) {H I—%Z—Q:}exp( jz9)

N jg_
= ——"— > exp(—jzg).
nsi 2T ion

For each isolated singular point —j0; ! we can represent the integrand by Laurent series

(5.9)

®(z) exp(—jzg)
. 1
J0n Jo; .

= H > L+ exp(—jzg)

l,n;ézz+-79n z+jo;

-  —1y2
= H de_ S {]gi texp(-o;'9) ['—'—ZT(l +(z+o7 ") + (—2'—L +. )]}

n—l,n¢1z+‘79" zZ+70;

When there are repeated eigenvalues, the characteristic function is

(t) = [nl (-1__11—%)“ (5.6)

where p, is the number of replications of g». There will be some minor modifications to our derivation
when pn, # 1 for some n. To simplify our discussion, we assume there are no duplicated eigenvalues.
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Hence, the residues of ®(z) exp(—jgz) are

N

Res{®(z) exp(—jgz), —jo; '} =jo;*{ [[ —— ¢ exp(~0;'9) (5.11)
n=1m#i Qi — On

A contour map is shown in Fig. 5.1. In this figure, there are two possible closed
loops, I + I and I; + Is. Which contour we use depends on the sign of g: e %9 must be

bounded. For z = z + jy, we have the following cases:

1. g > 0: €799% = ¢799% . ¢% implies that we need to take y < 0 and the loop C = I +1I3.

By the residue theorem,

N
- [ _
plo)=> 07" JI —— {exp(-0i'9) (5.12)
2:>0 n=1,n%#1i Qi — On
2. g <0: e799% = ¢799%. ¢%% implies that we need to take y > 0 and C = I; + I5. So,
N o
p@)=-> 0" [I —tem(-ei"9) (5.13)
0i<0 n=1,n#i 0 — On
Im
A
I
P BN
-, ~
/ AN
/ \

I >—}—>Re

Fig. 5.1: Contour map.
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5.3 Cumulative Distribution Function
Theorem 2 Let v be a complez normal vector with mean E(v) = 0, and covariance
M = E[vv]. Further let Q be any Hermitian matriz. Then the quadratic form g = vEQv
of v has a cumulative distribution function of
2 0i<0 {HnN 1,neti -&_g?;} exp(—€o;") if £<0
1= S0 {Thoy i 525  ex0(—€07) if €20,

where gy, are the eigenvalues of M Q.

Fy(6) = (5.14)

Proof:
The computation of Fy(£), the cumulative distribution function of g, falls into the following

two cases, following (5.12) and (5.13).

1. £<0:
13
Fy() = / pl9) dg
N
/ >oite 11 exp(—0;'9) dg
0 ;<0 n=1n#1i %~
N ¢ (5.15)
==Y oS 11 / exp(—o;'g) dg
2;<0 n=1n#: 0i — @n .
=Y < I exp(—£o; Y.
2:<0 {n 1,n#1 Qi —@n }
2. £20:
3
Fy(§) =/ p(g) dg
=1- / p(g) dg
¢
N
=1- I exp(—o; 'g) dg
Q;>0 n=1,n#i &= " (5-16)
N o
=1-Y o'¢ ]I / exp(—0; 'g) dg
0i>0 n=1,n#i 0i— @n £

0:>0 | n=1,n#i On

N
= —Z{ II = }exp<—§e;1>.
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5.4 A Partition of Unity

The following results do not relate directly to our development of CPs. We present
them here as they are very interesting and also very useful in the field of digital com-

munication. When £ = 0, we have the following corollary immediately from (5.15) and

(5.16).

Corollary 1 Let {01,092, -+ ,on} be distinct real numbers, then

N N .
Y[ 2=t (5.17)

i1=1 n=1,n#i 0i — On

The above derivation of the cumulative distribution function proves that this corollary is
true for real sequences of {91, 02, - ,on}. This result can be extended to include distinct
complex sequences [117].

The above partition of unity can also be expressed by the following beautiful forms:

1. Let g; = ip;, then

imlnminzi @700 o nZin (5.18)
1 < N-1 N—-1Y) .y
=>(N_1),;( 1) < i1 )z =1
2. When g; = %gl, then
R IRy
iml ne1ngs & T On B ol n=lngi ¥ - (5.19)
ol N—is1 [ N-11)1
=>N;( 1) (z_1>;=1

N N 1
> I ==1 (520)
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4. For g; =1%, ¢ #0,

N N
> Il = n/l =1 (5.21)

=1 n=1,n#i

Other than being pretty in expression, the above partition of unity can also be used
to simplify many expressions presented in the literature, for example [21, p.802(14-5-27)]

and [92, p.274(9.26)].

5.5 Quadratic Receiver

A quadratic receiver is a receiver that employs a filter bank to obtain a received signal-
plus-noise vector, then determines which signal is transmitted out of a finite number of
possible signals by considering the signal-plus-noise vector as a whole. Assume the channel
is C(r,t) with AWGN and may be either a fading or a nonfading channel. There are K
possible transmitted signals {so(t),s1, -+ ,5x—-1(t)}, and there are N filters in the receiver
filter bank {ho(t), h1(t),-+ ,hn-1(2)}. Fig. 5.2 shows a quadratic receiver. Let rx(t) be
the received signal before the receiver when s(t) is transmitted through channel C(r,1)

with AWGN n(t). Then

T (t) = c(7, 1) * sg(t) + n(t), (5.22)
where n(t) has a power spectral density of Ny/2. Define

e, = / re()hi(t) dt
—_—/c('r, t) * si(t)hi(t) dt + /n(t)hi(t) dt (5.23)
/ Zsja,(t se(t — ) halt) dt + / ()h(t) dt,

The signal-plus-noise vector when si(t) is sent is

'I"ko

Tk
n=| . | (5.24)

Tkn_1




r(t)

ho(t)

ha(t)

hn-1(t)

T0

Y

T1

TN-1

Decision
Unit

Fig. 5.2: Detection unit of quadratic receiver.
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Let tx = E(rx). The covariance matrix of the sample vector when si(

=B(rprd) - Eon” - PR B(rl) + Tty

defined as
Ry, =E[(rx — F)(rk — )7
w =E[(rx — Tx) (tk — %) ]
=E(rkrf - rkr'kH - fkrf + f‘kf‘kH)
=E(rkr,€1) - fkf‘kH.
We have
Tko
_ Tk,
I, = .
Thy-1
where

m=/EWﬁﬁh%mmmﬁ+/EWWMMﬁ,

which will be zero for fast fading.

To simplify our discussion, we assume that K = 2, and let

= ok
TkoTk
G = [ :

Tk, on
which is zero for fast fading. Also,

* *
ThoTko ThoTh: }

Tkl T;::o rkl ,r;::l

E(I‘kl‘f) =E( {

[ Tk00 TkO1 } Ny
Tk10 Tkl / h1(t)ho(t) dt

= =k
TkoTky

Thy F,’:l

1

|

/mmmmﬁ
1
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t) is transmitted is

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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where

oo =B (3 (el = s = ol [ i+ i) o
=51 [(Seatnatr — b GENEA4 " W)ho(r)RE) dr )
RN [ [ Gterontr s = g5 52— 5 WA dr
-2xf [ Bl OB anr = sk~ 85 = WIS o
=5 [ [ Ratr VBl Fartr = = WO~ 5 = R I) dr 2
= [ [ utr 0 SR Elar(r = b= i 5 u)T}ho(r)hs(A) dr dX

- / / R (7 \) i (r, Mo (r)RG(X) dr dX,

(5.30)
where we define

Welr, ) = TP Elsn(r — ¢ = wsiO = ¢ =)l
Similarly, 1

Tkol = / / Ro (1, A) Wi (T, A)ho(T)RT(X) dT @A,

Tk10 =/[Ra(r, A) T (7, A)h1(T)hg(N) d7 dX, and (5.31)

oy = / / Ry (7 \)Ta(r, Na (1) (N) dr d.
For the perfect synchronization situation,
y(r, N) = ) Ean(r = @i)shA — 4.
Without the assumption of synchroniz;tion,
Gur, ) = 088 [ solr = s = s = L) i
i

where p(p) is the density function of p. So,

1 / ho(t)ha (£) dt
Ry = [ Tk00 :’“01 ] + % - Ck. (5.32)
Tk10 Tkil / hy(t)ho(t) dt 1
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Since correlation detection is a linear operation, r is complex Gaussian with density

function [118]

p(rlsk(t)) = w—Nllﬁk—l exp|—(r — Fx) 7 Rg ' (v — F)]- (5.33)

Assume that both signals occur with equal prior probability. The maximum likelihood

decision rule we use is

plrlso(®)) — p(rlsr(£) 20

50

ﬁﬁm exp|—(r — Fo) T B3 M(r — F0)) - FllRTl expl( — F1) PRy = )] 20
e - )P R (e~ ) — (r — F0) TR )% In L (5.34)

S0
Ry 1
=>(r—u)HQ(r—-u)<ln‘TR—||+rHR ¥, — T Ry ro-—ZwHQ‘lw:g

50
=g =vIQviE,

where Q@ = R1—1 - Ral, w = 2(R51f0 - Rflfl), u= —%Q“lw, and v =r —u. Let
My = E[(v-¥)(v- 7)#|s0(t)] and My = E[(v-7)(v —¥)H|s1(t)]. When so(t) is sent, we
have Vs =T+ QY(Ry'to— Ry 't1) and |4y = To+ Q‘l(Ralf‘o — R;'F1). Therefore,
(v = sty = (£ — £o) which implies My = Ro. Similarly, when s1(t) is sent, we have
M; = Ry.

When we assume fast fading, ¥ =0, (5.15) and (5.16) can be utilized to evaluate the
performance of different signaling waveforms. For ¢ > 0, the bit error probability when

so(t) is sent can now be expressed as

13
Plelsolt)) = / p(glso(t)) dg

=Fylso(9)(€) (5.35)

N
a; _
B Rt L)
0;>0 | n=ini + "
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where a,, are the eigenvalues of Rg@. The bit error probability when s1(t) is sent,
[o.0]
P(els(t) = /E plols1 (1)) dg
3
1= [ plain(0) dg
—00

=1 — Fys,5)(&)

N b |
=3¢ 11 bi_’bn}exp(—ﬁbi‘l),

b; >0 n=1,n#i

(5.36)

where b,, are the eigenvalues of R1Q. Similarly, for £ <0, we have

N .
Pelso(®)) = }:{ 11 ai‘fan}exp(—ﬁazl) (537

a;<0 | n=1,n#i

and

b;<0 | n=1,n#i

N .
Plels1() =1 - Z{ I1 bib_’bn}exp(—sb;l)- (5.38)

The overall bit error probability is
1 1
P(e) = EP(elso(t)) + §P(e|31(t)). (5.39)

This expression will be used to characterize the performance of the waveforms created

using the iterative algorithm.
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Chapter 6
Implementation of the Algorithms

As mentioned in section 1.3, we are working with physically realizable signals and
filters in Lo. The difficulty in finding CPs is that solutions must be obtained by solving
integral equations. These depend on the channel statistics properties. Asis frequently done
in numeric work in general [119], we work with sampled versions of these functions. Instead
of working with the infinite dimensional functions directly, we use their approximations in
finite-dimensional spaces to be able to implement these algorithms from chapter 4. As the

sampling interval decreases, a solution of increasing accuracy is obtained.

6.1 Conversion of a Linear Integral Equation to Its Discrete Equivalent
A linear integral equation may be converted to a discrete equation by the following

approximation. For every 7,

b
y(r) = / R(r, )z() dA
B (6.1)

= /_\“1}20 ,;AR(T, mANz(mAX) AN,

where A, B € N such that a = AAMN and b~ BAM. So, for AX small enough, we have

B
y(r) = 3 R(r,mANz(mANAX. (6.2)

m=A

Now, we can represent y(7) in its discrete form.

y(r) = Lgirg)oy(nAT), (6.3)

where n € N such that 7 = nA7. Again, when At small enough, we have
y(7) = y(nAT). (6.4)
Let AT = min(AT,A)), and equating (6.2) and (6.4), we obtain

B
y(nAT) = 3, R(nAT,mAT)z(mAT)AT. (6.5)

m=A
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Define the following vectors and matrix with elements being the values of y(nAT), z(mAT),

and R(nAT, mAT), respectively:

[ : ] [ : |
z((n — 1)AT) y((n — 1)AT)
x=| z@AT) |, y=| y@BAD ), (6.6)
z((n + 1)AT) y((n + 1)AT)
i i i )
and
R= | R(mAT, nAT) -+ |. (6.7)
Then (6.5) is equivalent to
y = RxAT. (6.8)

Thus the integral equation is approximated by a matrix equation. We will apply this
conversion to the pertinent equations from chapter 4. Equations (4.32) and (4.33) have

the following form

y(r) = / (Ra(r, \YC(r, A) + ksinc(@m (r = )ly(Y) dA
(6.9)
- / Ra(r, \)C(r, Ny(N) dA+ / ksinc(2mf(r — \)y(\) dA.

In (6.9), we have the discrete equivalent of [ Ra(7,A)C(7,A)y(}) dX being Py, where

p— |- Ra(mAT,nAT)C(mAT,nAT) -+ | =R,0C. (6.10)

In (6.10), R is the matrix representations of Rq(7, ), C is the matrix representation of
C(r,)), and o represents the Hadamard (element by element) product. So, (6.9) can now

be represented in discrete form as
y = [Ro o C+kWly, (6.11)

where W is the matrix representation of 2f sinc(2m f(7 — X)).
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6.2 Discrete Version of Algorithm 2 and 3

 Let Ry, ¥,0, W, and S be the matrix representation of Ra(T,X), ¥(7,}), ©(7,}),
2f sinc(2n f (7 — X)), and Z[2f sinc(2r f (r —\))], respectively. Algorithm 2 can be presented

in sampled form.
Algorithm 4 1. Randomly select an initial vector sg of length N.

2. Set hg to make

i = [(1 - B)Ra o ¥ + FW]ho, (6.12)

where 7 is the largest eigenvalue in magnitude of the kernel [(1 — B)Ra¥ + SW],

while hg is the corresponding eigenvector.

3. Set sq so that for hy from the last step,
Y080 = [(1 — B)Ra © © + WISy, (6.13)

where o being the largest eigenvalue in magnitude of the kernel [(1 - B)Ro© + W],

and §gy being the corresponding eigenvector.
4. Repeat steps 2, 3, and 4 a sufficient number of times.
Algorithm 3 can be presented in discrete sampled form.
Algorithm 5 1. Randomly select initial functions sy and si.

2. Set hyy so that
Yoohoo = [(1 = B)Ra © Yo + SW]hgg, (6.14)
Yoo is the largest eigenvalue of the kernel [(1 — B)Rq o o + BW], while hog is the

corresponding etgenfunction.

3. Set hy so that
€o1ho1 = [(1 — B)Ra 0 o + BS]hot, (6.15)

£11 is the smallest eigenvalue of the kernel (1 = B)Rq o ¥g + B8], while hg; is the

corresponding eigenfunction.
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Set hyy so that

")’111_111 = [(1 - ﬁ)Ra oW + ,BW]I_Im, (616)

11 is the largest eigenvalue of the kernel [(1 — B)Rq o ¥1 + BW], while hiy is the

corresponding eigenfunction.

Set hyy so that
£10h1o = [(1 — B)Ra © ¥1 + BS]huo, (6.17)

€10 is the smallest eigenvalue of the kernel [(1-B)Rao ¥+ BS)], while hyg is the

corresponding eigenfunction.

Find the average, i.e.,

ho = hqo + ho, (6.18)
and
h; = hgy + hig. (6.19)
Normalize hg and hy.
Set sgp so that
Yoo800 = [(1 — B)Ra © ©g + BW]E00, (6.20)

oo is the largest eigenvalue of the kernel [(1 — B)Rq © ©g + BW), while Sgo is the

corresponding eigenfunction.

Set sg1 so that
01801 = [(1 — B)Re © ©o + BS]S01, (6.21)
€11 is the smallest eigenvalue of the kernel [(1 — B)Rq © ©¢ + B8], while So1 i the

corresponding eigenfunction.

Set s11 so that
y11811 = [(1 — B)Rq © ©1 + fW]s10, (6.22)

1y is the largest eigenvalue of the kernel [(1 = B)Rq 0 ©1 + SW], while 811 is the

corresponding eigenfunction.
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11. Set syp so that

£10810 = [(1 — B)Req © ©1 + BS[S10, (6.23)

£10 is the smallest eigenvalue of the kernel [(1 — B)Rq 0 ©1 + BS], while 819 is the

corresponding eigenfunction.

12. Find the average, i.e.,

So = S0 t+ S10, (6.24)

and

81 = sp1 + S11- (6.25)
13. Normalize sy and s;.
14. Repeat steps 2to 13 a sufficient number of times. Save these CCPs with a large SNR.

As Rqo(7, ) is an autocorrelation function, while 2f sinc(27f (7 —))) and Z[2f sinc(2m f
(r — \))] are the inverse Fourier transform of non-negative functions, all these kernels are
positive semi-definite. So, Ry, W, and S are required to be positive semi-definite, too.
Additionally, since they are Toeplitz matrices, the requirement of positive semi-definite
implies the discrete-time Fourier transforms of the sequences of their elements have to be
non-negative [120]. In general, a sampled sequence is not necessary non-negative. This is
because when we perform discrete sampling from a continuous function, g, and present it
as a finite dimensional vector, we introduce two artifacts. These are the windowing effect
as we truncate the function to a finite length, and the aliasing effect if we do not sample
fast enough. Aliasing can be controlled fairly well since most physical autocorrelation
functions are low-pass. When we perform any kind of windowing, we equivalently convolve
the Fourier transform of g with the Fourier transform of the windowing function. By
performing this convolution, we introduce negative values to the Fourier transform of the
resulting function. The effect of introducing negative values to a positive sequence can
only be reduced, but cannot be completely eliminated, if we use a windowing function that

has a long support.
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The sampled sequence can be made to have a positive transform again by running

it through a composite mapping algorithm [121]. However,

function at g(0), which causes

this

Fig. 6.1 illustrates this deviation and the new peak to g(0).

usually introduce a delta

a deviation of the sample vector from the original function.
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Fig. 6.1: The illustration of windowing effect.

6.3 Multipath Fading Channel Model

We use the autocorrelation function of the land-mobile mo

del (as shown in Table 2.1)

Ry (7) = Jo(2mByT) to represent the fast fading aspect, and the European Global System

for Mobile Communications

represent the multipath aspect of our study

(GSM) typical-urban (TU) and hilly-terrain (HT) models to
[96]. Table 6.1 presents the amplitude and

delay profiles of the simpler 6-path TU and HT multipath channels.

Table 6.1: Delay and Amplitude Profile of GSM Channels.

TU model HT model
Path # | Delay(us) | Power Delay(us) | Power
1 0.000 1.000 0.000 1.000
2 0.813 0.669 0.813 0.251
3 1.626 0.448 1.626 0.060
4 2.439 0.300 15.447 2.258
5 3.252 0.200 16.260 0.177
6 4.056 0.134 17.073 0.122
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6.4 Numerical Methods

The most prominent challenge we face in computing the numerical solution to (6.12),
(6.13) and the similar equations in Algorithm 5, is the size of the matrices. We need to solve
for the eigenvectors corresponding to the largest eigenvalue and the smallest eigenvalue of
these matrices. A large matrix size exists because we need a large sample size to take off
the original function before truncation. For example, we need a span of at least 0 to 3
seconds for Jy(+). Only then the sampled sequence resemble the original sequence loosely.
This is shown in Fig. 6.2. This is similar to Fig. 6.1, which is shown at a different time
scale. We can observe the same delta function at time 0 but with a smaller magnitude.
Also shown in Fig. 6.2, half of the the sample sequence is set to zero in order to get a
proper autocorrelation matrix. So, the actual approximation is done for the range of t from

0 to 3 seconds. Now, some simple arithmetic can show us the magnitude of the sample

1 :

N

\.

\.
[0} 0.5 3 \
k] .
2 N
§) ) Sampled
ampled sequendée
= ot N i—me _
-0.5 :
0 2 4 6 8

Fig. 6.2: Approximation of Jo(t) with a positive sequence.

size we need. From Table 6.1, we can see that the path delays are multiples of 0.813us. It
is reasonable for us to use one-tenth of the unit of the path delays as our sampling time,

ie., 0T =8.13 X 1085, where 67 is the sampling interval. So, We have
orBydTn = 3 = Byn = 5872876.129, (6.26)

where 7 is the sample number corresponding to t = 3 seconds, By is the Doppler spread

and is defined as Bg = ¥, where v is the travel speed, and X is the wave-length of the
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carrier waveform. Suppose we are walking at a speed of 2 meters per second while talking

on a cellular phone with a frequency of 900MHz. Then, By = 6Hz. This will mean we
need a sample size of 978,813! This number corresponds to a 978,813 x 978,813 matrix
whose eigenvalues would have to be computed. We may reduce the number by changing
the setting. For example, if we are traveling in a fast car at 80 miles per hour while talking
on a cellular phone with a frequency of 1800MHz, we have By = 216Hz. Furthermore,
if we use 0T = 1.626 x 10~ "s, we need a sample size of 13,595. Although this is a much
more implementable figure, we still need to improve the method of numerical computation
so that the algorithm may be implemented on today’s computers. Mainly, we want to
reduce the memory requirement and eliminate unnecessary computations. For example, the
eigenvectors corresponding to the largest eigenvalues can be calculated by using the power
method. As the kernel of the linear equation is symmetric, the eigenvectors corresponding
to the smallest eigenvalues can be calculated by using the conjugate gradient method [122].
So, we can avoid having to compute all the eigenvectors.

The power method is an iterative method that repeatedly multiplies an initial random
vector by the matrix for which we intend to find the eigenvector corresponding to the
largest eigenvalue in magnitude (which may be either positive or negative). By this process,
the product of the matrix-vector multiplication converges to the eigenvector with largest
eigenvalue in magnitude. The method requires that there be a single eigenvalue of largest
magnitude. The convergence rate of the power method is highly dependent on the relative
magnitudes of the eigenvalues. In the extreme case that all the eigenvalues have the same
magnitude, the power method will not converge.

The conjugate gradient method is an iterative method that solves an equation of the
form

Ax =b, (6.27)

which is recommended by Demmel as the algorithm of choice for systems involving sym-
metric positive definite matrices [122]. What this method does is actually find x that
minimizes the function

F(x) = %xAx ~bx. (6.28)
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When the above function is minimized, the gradient
Vf(x)=Ax-b (6.29)

is zero. The conjugate gradient method itself does not solve the eigenvalue problem. By
iteratively applying the conjugate gradient method to an initial random vector, we have
the inverse power method. The process converges to the eigenvector corresponding to the
smallest eigenvalue in magnitude. The convergence rate of the conjugate gradient method
again depends on the relative magnitude of the eigenvalues of the matrix. The closer the
small eigenvalues are to each other, the slower the convergence.

If we examine the expression of the equations in Algorithms 4 and 5 more closely, they

are of the following form
v =[fRo (vw") + (1 - A)QI&, (6.30)

for some vector v. Since R and Q are Toeplitz Hermitian matrices, the entire computation
can be done with vector manipulations. This can drastically reduce the storage used.
Every n x n matrix can be represented using an n x 1 vector.

In fact, both the power method and the conjugate gradient method only require being

able to compute matrix-vector multiplications, i.e., we need to be able to calculate
[Ro(vw) +Qlx =1y, (6.31)

assuming that 8 and (1 — B) are absorbed into R and @, respectively. Let r be the
coefficients of R, and q the coefficients of Q. For (6.31), each term of y can be evaluated

as

vi =) _lrg-iviv; +4-9)%; (6.32)

3
The power method and the conjugate gradient method in cooperation with the above
method of matrix-vector multiplication are used to evaluate Algorithm 4. A result is

shown in Fig. 6.3 with 8192 = 2!3 sample points. Fig. 6.3, like many other plots in

chapter 7, is arranged in groups of four. The top left-hand plot depicts the initial random
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signal while the top right-hand plot depicts the change of the eigenvalue through the

iterations. The bottom left-hand plot depicts the final s while the bottom right-hand plot
depicts the final h. There are two curves in the plot of eigenvalues. One of the curves
is obtained from the iteration of the s part while the other curve is obtained from the
iteration of the h part. Mostly, these two curves are close to each other and are nearly
indistinguishable. However, when the algorithm does not converge, these curves can differ
widely. For analytical purposes, there is no essential difference in the properties of these

two sequences of eigenvalues. Therefore, these curves need no specific labels.
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Fig. 6.3: The illustration of the result from Algorithm 4 with 8192 data points.

Although our program is capable of generating the above results within 10 iterations,
for any sample size that is larger than around 213 our program will require significantly
more time to run. Because the use of a smaller sample size merely implies a nonrealistic
Bg, which does not compromise the characteristic of the CP that relates to the channel

properties, all of our experiments were run with sample size 2''. We will use the HT and
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TU channel profiles (as shown in Table 6.1) as the multipath model. In order to observe the

fast fading characteristic, the channel needs to vary fast enough. At the same time we prefer
to have a positive sequence that closely approximates the original channel autocorrelation
function. These together require a large By. In fact, we use By = 105,000. We can obtain
a B, of 105,000 when we travel at 4, 088m/s while using a carrier frequency of 7.7GHz.
The parameter for frequency containment is set to be f = 6,250Hz, f = 12,500Hz, and
f = 25,000Hz.
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Chapter 7

Results and Observations

Some experimental results from Algorithms 4 and 5 are presented in this chapter.
The multipath models as presented in section 6.3 are used. The sequence of the largest
eigenvalues obtained through iterations of the algorithms is used as the measure of both
the performance of the CPs and the convergence of the algorithms. We point out that for
a single path channel, the highest value of the largest eigenvalue from the algorithms is 1.
This value serves as a reference standard.

The results are grouped by aspects of interest and are presented in the following
subsections: different initial vectors, frequency containment, the multipath characteristics,

the effect of synchronization uncertainty, and the performance of the signal sets.

7.1 Different Initial Vectors

As we are not certain about the convergence of Algorithm 4, it is assuring to observe its
behavior for different initial vectors. The examples presented here are with TU multipath,
B = 0.3, f = 12500Hz, and uniformly distributed synchronization delay with distribution
of U(—4.15 x 1078,4.15 x 10~%)sec. As expected, Figs. 7.1 and 7.2 show that for different
initial vectors, the resulting CPs are very similar to each other up to a shift in time. The

largest eigenvalues converge to 0.6994 in all cases.

7.2 Frequency Containment

All plots in this section use f = 12,500Hz. They are divided into four groups: Group
1, as shown in Figs. 7.3 and 7.4, comprises single path fading without synchronization
uncertainty; Group 2, as shown in Figs. 7.5 and 7.6, comprises single path fading with
synchronization uncertainty whose delay is Gaussian-distributed (o = 1.124); Group 3, as
shown in Figs. 7.7 and 7.8, comprises multipath channel (HT) without synchronization

uncertainty; and Group 4, as shown in Figs. 7.9 and 7.10, comprises multipath channel
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(TU) with uniformly distributed synchronization delay, ¢(—4.15 x 1076,4.15 x 1075)sec.

We can observe from all these plots that the signal and filter functions get smoother with
a decrease in the largest eigenvalue as § increases. We can observe in Figs. 7 4(b) and

7.6(b) some numerical errors because the power method does not converge fast enough.

7.3 Effect of Multipath Channels

The most interesting observation for multipath channels is that multiple paths may
increase the SNR, compared with single paths. All of the plots in Figs. 7.11 and 7.12 have
B = 0. Fig. 7.11(a) shows a plot with single path fading, which has its largest eigenvalue
converged to 1. The multipath case in Fig. 7.11(b) has its largest eigenvalue converged to
1.6496.

We also observe that the signals adapt to the channel properties. The peaks shown in
Fig. 7.11(b) are separated exactly by channel path delays, as expected. When there are
synchronization uncertainties, the peaky nature of the pulse disappears as shown in Figs.
7.12(a) and (b). However, the largest eigenvalues still have higher values compared to that

of single path settings.
7.4 Effect of Synchronization Uncertainty

7.4.1 Fast Fading

The results in Figs. 7.13 and 7.14 are obtained with f = 6250Hz and § = 0.3 for
single-path fading. The spread of the signal pulses increases with the synchronization
uncertainty. At the same time, the largest eigenvalue or the SNR decreases as the signal

spread increases.

7.4.2 No Fading

1t is interesting to see how the synchronization delay affects the CP. The results can
be obtained by setting 8 = 0 and the coefficients of the channel autocorrelation matrix, r,
to some constant values, which is equivalent to having a constant autocorrelation of the

channel. Fig. 7.15(a) depicts the significance of the Match Filter Theory. That is, any
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signal-filter pair will perform equally well for a nonfading-single-path channel, as long as
the signal-filter pair is matched. On the other hand, Fig. 7.15(b) shows that if there is a
synchronization uncertainty, the CP is shaped by the distribution of delay. The effect of
synchronization uncertainty on the shaping of CPs also occurs in multipath channels as
shown in Figs. 7.16(b) and 7.17(b). Furthermore, for the cases of multipath channels, a CP
is also controlled by the path delays, even where there is no synchronization uncertainty

as shown in Figs. 7.16(a) and 7.17(a).

7.5 Signal Sets

We discussed in section 4.4 that there are two alternatives to apply the results from
this dissertation to obtain signal sets for digital communication. These alternatives are:
First, use the CPs generated with Algorithm 4 in a pulse-position modulation. Second,
use the CCPs generated with Algorithm 5. In this section, we compare the performance
of the signal/filter pairs obtained by using our approach with some traditional waveforms,

i.e., the flat-top pulses and the raised-cosine pulses.

7.5.1 CCPs

Because of the slow convergence of Algorithm 5, all plots in this section are obtained
with 512-point-sample vectors. We use 67" = 1.626 x 10~ 7s. This is equivalent to a data
rate of 12,012 bits per second. In all of the plots, we assume single path fading channel
with perfect synchronization.

Figs. 7.18 and 7.19 show the change in signal/filter of CCPs according to different
values of 8. In each of these figures, the group of four pictures of CCPs is arranged into
two rows. On the top row, the picture on the left-hand side shows so while the one on the
right-hand side shows hg. On the bottom row, the picture on the left-hand side shows s
while the one on the right-hand side shows h;. We can observe from all these plots that
the signal and filter functions are getting smoother as § increases.

Fig. 7.20 shows the performance plots of probability-of-error versus SNR. On the

performance plots of joint CPs, we also show that of binary flat-top pulse and raised-
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Fig. 7.20: SNR vs. P(e), CCPs for single path, perfect synchronization.

cosine pulse in pulse position modulation (PPM) pairs with a support of 8.35 x 10~%s in
the same channel for comparison. The observations are: First, for CCPs, the smaller the
B, the better the performance. Second, there are error floors for the CCPs. Third, before
reaching their error floor, CCPs with 8 = 0.1 and 8 = 0.3 have a performance gain of 2 dB
“to 3 dB over the raised-cosine pulse, and have a 8 dB to 9 dB gain over the flat-top pulse.
CCPs with 8 = 0.5 have a performance marginally better than that of the raised-cosine
pulse, while that with 8 = 0.7 have a performance loss of around 2 dB over that of the
raised-cosine pulse.

From all of the experiments we did for different fading channels, there is a similar trend
of relationships between the performance of CCPs, raised-cosine pulse and flat-top pulse
as observed above. Another observation is different initial vectors can generate CCPs with
very different performance. We used four different initial vectors for each set of channel
parameters and ran Algorithm 5 for 60 iterations with each of these initial vectors. The

best CCPs obtained with each of the different initial vector can differ by more than ten
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folds in terms of probability-of-error for the same set of channel parameters. Considering
the small number of experiments we did, the possible best CCPs may perform far better

than these CCPs we found.

7.5.2 PPM with CPs |

Results presented in Figs. 7.21 through 7.24 are obtained with f = 12,500Hz and
a data rate of 1500 bits per second. The length of the sample vectors are 4096, with
5T = 1.626 x 10~ 7s. From all the plots, we observe: first, a 5 to 10 dB gain in performance
for the raised-cosine pulse over the flat-top pulse for different fading and synchronization
situations; and second, CPs with 8 =0.1 through 8 = 0.5 have very similar performance
while the one with beta = 0.7 is generally inferior to the other CPs. Figure 7.21 shows
the performance of the CPs for TU multipath fading model with a uniformly distributed
synchronization delay such that U(—4.15 x 107°,4.15 % 10-5)sec. The waveforms of these
CPs are shown in Figs. 7.7 and 7.8. There is an 8 to 9 dB gain in performance of all these
CPs over the raised-cosine pulse.

Figure 7.22 shows the performance of the CPs for HT multipath fading model without
synchronization delay whose waveforms are shown in Figs. 7.7 and 7.8. We also observe
a 10 to 12 dB gain in performance of the CPs over the raised-cosine pulse. Now, there is
less than 2 dB difference between the CP with 8 = 0.7 and the other CPs.

Figure 7.23 shows the performance of the CPs for single path fading with a Gaussian-
distributed synchronization delay (o = 1.124), whose waveforms for different B’s are shown
in Figs. 7.5 and 7.6. In this figure, we observe that the flat-top pulse reaches its error floor
at the SNR of 65 dB. We also observe a 10 to 13 dB gain in performance of the CPs over
the raised-cosine pulse. This time, there is a 3 dB difference between the CP with 8 =0.7
and the other CPs.

Figure 7.24 shows the performance of the CPs for single path fading with a perfect
synchronization whose waveforms for different values of 8 are shown in Figs. 7.3 and 7.4.
We observe a 10 to 15 dB gain in performance of the CPs over the raised-cosine pulse,

while the CP with 8 = 0.7 has a 5 dB difference from the other CPs.
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7.6 The Convergence of Algorithms

In some cases, Algorithms 4 and 5 do not converge. Among all unknown causes of the
failure for these algorithms to cOnverge, there are two major possible causes. Firstly, the
power method or the conjugate gradient method may not have converged rapid enough to
the correct eigenvalue/ eigenvector by the time the preset number of iterations has been
exhausted. This situation may occur if the largest eigenvalues are t00 close together for the
power method, or the smallest eigenvalues are t00 close together for the conjugate gradient
method (see discussion in section 6.4). Secondly, the averaging effect of synchronization

uncertainty counteracts with the convergence.
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Chapter 8

Conclusion and Discussion

In this chapter, the contributions made in this dissertation are summarized. Directions

for future study are discussed.

8.1 Summary

In this communication theory research, we were able to characterize the optimal detec-
tor and signal by maximizing the SNR for communication through multiplicative channels,
which may be slow or fast fading. In addition, this characterization is general enough to
include single-path and multipath fading with different synchroniza.tion—delay profiles.

The design criterion of maximizing SNR with fixed energy leads to a constrain op-
timization problem. The optimization was performed by using the Lagrange multipliers
in a function space. We were able to characterize the optimal detector as the eigen-
function corresponding to the largest eigenvalue of an operator with kernel being the
product of the channel autocorrelation function and a transformation of the transmit-
ted signal. The transformation of the transmitted signal depends on the multipath and
the synchronization—dela.y profiles.

We then derived the optimal signal and detector as a pair, this time optimizing the
two variables simult@neously using the Lagrange multipliers. The conclusion we obtained
was that the signal and the filter must be similar to each other in amplitude, but they
might differ in sign. However, the resulting expression did not provide a way to determine
the optimal functions physically besides a list of properties as in section 3.4.

Based on the symmetric role of the filter and signal in a communication system,
we derived an iterative algorithm (Algorithm 1) which allowed us to generate an optimal
consonant pair from random seeds. This iterative algorithm contains two alternating steps:

1. an optimal detector to generate an updated filter function for the previously generated
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signaling function; and 2. an optimal detector to generate an updated signaling function
for the previously generated filter function.

For single-path fading, the above iterative algorithm always generates consonant pairs
that approach delta distributions. Physically this is very reasonable. If there is an uncer-
tainty in the channel status, a transmitted signal should use as little time of the channel
as possible. However, a function that is close to the delta distribution is not practical, be-
cause it requires infinite band width to transmit. So, we introduce 2 frequency containment
constraint to Algorithm 1 and derived Algorithm 2.

In order to communicate over a fast fading channel, the use of amplitude and phase
modulation is inappropriate. Something akin to orthogonal signaling is necessary. A
procedure, Algorithm 3 was developed to generate two CCPs such that the corresponding
functions were nearly orthogonal among the conjugate pairs. Algorithm 3 required two
copies of Algorithm 2 being executed in parallel with the additional requirement that the
updated consonant pair from one execution was related to the eigenfunction corresponding
to the smallest eigenvalue of the other execution.

Furthermore, we derived Algorithms 4 and 5, the discrete version of Algorithms 2 and
3, on which we did all the experiments.

To help us compare CCPs generated by our procedure with other standard signaling
waveforms, we also derived the density and distribution functions for quadratic forms
of complex normal vectors. The equation we obtained can be evaluated by using the
eigenvalues of a single matrix. This matrix is the product of the correlation matrix of the
normal vector and the Hermitian of the quadratic form. This is an extension of previous
results as most of these results would require us to evaluate some infinite sequence Of
only applicable to some specific values. A partition of unity found in the evaluation of
the distribution function at point zero 1s useful in simplifying some expressions used in

standard digital communication reference books.
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8.2 Future Work

This dissertation provides a new approach to signal and detector design for commu-
nication through fading channels. There are many directions that can be taken from this

point both theoretically and practically. Here we list a few of them.

1. Convergence of the algorithm: It is easy to show the algorithm for single-path fading
channels when there is no synchronization uncertainty with 8 = 0 or B =1hasa
monotonic increasing largest eigenvalue. The convergence of the algorithm for the
above and other situations remains unknown. Knowing the limit of the convergence
of the algorithm will help to extend the analysis by applying similar technique to

more the complex models.

9. Quadratic forms: The development of the expression of the density and the distribu-
tion functions of quadratic forms with zero mean normal vectors is sufficient for this
dissertation. However, to make the expression for the density and the distribution
functions truly useful, e.g., applicable to the slow fading situations, an extension of
these equations to include nonzero mean normal vectors is necessary and is highly

valued.

3. Error floor: The phenomenon of error floor is discussed in the literature, including
those written by Hansson [108] and Simon [92]. The concept of error floor is referred
to as “irreducible bit error probability” or “error floor.” The error floor is the limiting
behavior of P(e) > 0 as the SNR approaches infinity for some signaling schemes with
their corresponding receivers. Simon pointed out that for M-ary Differential phase-
shift-keying, the error floor exists in any channel with fading autocorrelation that
is not equal to one (fast fading). Hansson, on the other hand, showed that for
orthogonal signal/filter pairs, the error floor does not exists. Results from section
5.5 can be used to extend the characterization of the signal/filter pairs that do not

have an error floor.
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4. Consonant pairs for slow/nonfading channels: We observed from the experiments

that there are relationships between the synchronization uncertainty and the shapes
of a consonant pair. This is an area that may have significant practical importance,

as synchronization uncertainty is unavoidable in communication.

. Analysis of the consonant pair: We can observe that consonant pairs of different
channels share many similar properties. If we can analyze and successfully represent
the consonant pairs of most common channels with some specific family of functions,
e.g., wavelets, we have a flexible communication system that can casily adapt to these

common channels.
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Appendix A

Derivative of a Functional with Respect to a Function

Let function u € Lo such that u : R — R, and let functional F : £ — R such that

F(u) € R Then éf;_;ﬁgl € Lo, the derivative of F' with respect to u at ugp € L3 can be
defined as a linearization of F at up in Gateaux sense [123] as follows:
dF
F(ug + €U) =F(ug) + ( d(“°) ,€U) + o(e)
quzuo) (A1)
=F(ug) + €( ,U) + o(e),
du
where € € R, and U € L is any function, and
dF(uo) r _ / d F(uo)
(T8 0y = [(E20U) dt (42)
As e = 0, o(¢) = 0, from (A.1) and (A.2), we have
dF(u()) T F(UO—GU)-—F(U())
/( 70 YR)U(t) dt = lgx(l) . . (A.3)

Assume F(u) is differentiable at ug and F(ug) is a local maximum of F. Then for

e > 0 and when ¢ is small, there exists K € R such that

- - dF - —
F(ug — eU) = Fluo) _ K/( (UO))(t)U(t) dt < F(ug — V) — F(uo) (A.4)
—€ du €
As (A.4) is true for all U € L, especially for U = 0, we have
dF(’u,o)
( YR)U(t) dt = 0. (A.5)
du
Additionally, (A.5) implies
dF(up) _

= 0, (A.6)
since it is true for all U € L3. The same argument with e < 0 can show that ———= =0

du

for F(ug) being a local minimum.
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The definition of derivative of a functional with respect to a function as in (A.3) can
be extended to complex functions. Let h € Lo such that h : R — C, and functional
F: Lo — R such that F(h) € R. The extension may be done in the following manner. Let

R(t) = u(t) + ju(t), where both u(t) and v(t) are real, we have !

dF(h) 1 oF(h) O F(h)
dh —2( 5u ' ov )’ (A7)
and
dF(h) 1 [(98F(h) O F(h)
an "5( ou ) aw ) (A-8)
where 651(?) and 62’5}]}) are computed as, for € € R, and U,V € L3 being real valued,
d _ [(9F(ho)
(7eF 0| 0 =[G &
— i Flho +eU) = F(ho) (A.9)
e—0 €
—lim F((ug + €U) + jvo) — F(ho) ’
e—0 €
and
0 _ [ ,0F(ho)
(3sFW| 7= [hove
— iy E 0 +5¢V) = Flho) (A.10)
e—0 €
—lim F(ug + j(vo + €V)) — F(hﬂ).
e—0 €

To demonstrate the above computation with an example, suppose H (h) = / h(t)h*(t) dt,
then
H((uo + €U) + juo) — H(ho)

= [ a0 + U0 + (O]t + V@) = o(0] d = Ho
= [ {(unlt) + V(O + (0} di - [ b + oy de
z2e/u0(t)U(t) dt,

(A.11)

1Following Haykin [120], whom defines in this manner for the complex derivatives with discrete vectors,
which in turn follows Schwartz [124].
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| A0s)) ) = 2w (A1)
Also,
H (ug + j(vo + €V)) — H(ho)
= / [uo(£) + 3 (wo(t) + €V (£))][uo(t) — G (vo(t) + €V (t))] dt — H{(ho)
= / {ud(t) + (vo(t) + €V (£))*} dt — / (B (t) +v2(t)} dt (A.13)
~2 / vo(£)V (t) dt,
gives
6Fa(: & )(2) = 2vo(t). (A.14)
That is,
%@ - (t) =hg(t) and df ,5”') N (t) = ho(2). (A.15)
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Appendix B

Inverse of a Symmetric Kernel

Let k(\,7) = Z[g(\, 7)), where Z(-) stands for the inverse of the operator g(\, 7). So

that we have
/k(A, )g(T,v)dT = §(A —v). (B.1)

For the case g(),7) = g(A\ — 1) and k(\, 7) = k(X — 7), (B.1) becomes

/ K(t — u)g(u)du = 6(2) (B.2)

where u = A — 7. Observe that the left-hand side of (B.2) represents the convolution
between k(t) and g(t). By performing the Fourier transform to both left hand side and
right hand side of (B.2), we obtain

K(w)G(w) =1, (B.3)

or
1
- Gw)’

where K (w) and G(w) are the Fourier transforms of k(t) and g(t), respectively. If G (w)=0

K(w) (B.4)

for some w and is bounded below, we use K (w) = 5(“—)17_'_—1 as the approximation of the inverse

operator kernel, with I being some constants such that G(w) + I > 0.
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Appendix C

Programs

Matlab Codes

Algorithm 4

function [si,SH,EV,flagl = alg(signal_length,deltaT,Bd,beta,xi,omega,K,mu,N)

h
h
h
h
h
h
%
h
h
%

==

h

[si,SH,EV,flag] = alg(signal_length,deltaT,Bd,beta,xi,omega,K,mu,N)

This program implements Algorithm 2 in the dissertation which having
Algorithm 1 as a special case when beta = 0

Output:

Si: initial signal

SH: final S, and H pair

EV: eigenvalue recorded through out the process
flag: flag = 1 when there is any decrease in ev

Input:

signal_length: number of points in the signal.
deltaT : sampling time
Bd: Doppler freq
beta: weight number [0,1]
xi = [ phi_1 xi_1]

[ phi_2 xi_2]

[ phi_3 xi_3]

[ phi_4 =xi_4]

phi_i is the delay, and xi_i is the channel gain for path i
omega: bandwidth in angular speed

% K: span of the random variable
% mu: synchronization delay

% 0, delta

% 1, uniform

% 2, Gaussian

% N: number of iterations

h

sxi = xi;

smxi = max(sxi(:,1));
hxi=[-1#xi(:,1) xi(:,2)];
hmxi = min(hxi(:,1));
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EV = [1;
oldev =0;
flag = 0;
SH =[1;
r = Cal_r(beta,Bd,signal_length,deltaT);’ autocorrelation function of the channel
r1 = Cal_r(0,Bd,signal_length,deltaT);
W = Cal_W(beta,omega,signal_length,deltaT); % 2beta w sinc(2pi w(tau-lambda))
WO = zeros(size(W));
h = zeros(signal_length,1);
Z1 = floor(signal_length/4);
Z = zeros(Zl,1);
s [Z;randn((signal_length-2%Z1),1);Z]; % leave room for SPmu and shifts
s = normal_v(s,deltaTl);
si = s;
for n = 1:N,
fprintf (’\nNumber of iteration:%d\n’,n);
s = SPmu(s,K,mu);
[h,hev] = Maxeig_p_method(r,s,sxi,smxi,W,0);
h = normal_v(h,deltaT);
hev = h’*Rxb(rl,s,sxi,smxi,W0,0,h);
if hev < oldev,
flag = 1
end
oldev = hev;
h = SPmu(h,K,mu);
[s,sev] = Maxeig_p_method(r,h,hxi,hmxi,W,0);
s = normal_v(s,deltaT);
sev = s’*Rxb(rl,h,hxi,hmxi,W0,0,s);
if sev < oldev,
flag = 1
end
oldev = sev;
EV = [EV; sev hev];
SH = [s hl;

end
EV = EV+deltaT*deltaT;

Algorithm 4 for Non-Fading Channel

function [si,SH,EV,flag] =
alg_slow(signal_length,deltaT,Bd,beta,xi,omega,K,mu,N)
% [si,SH,EV,flag] = alg_slow(signal_length,deltaT,Bd,beta,xi,omega,K,mu,N)

% This program implements Algorithm 2 for the case when there is no fading.
% Output:

% Si: initial signal

% SH: final S, and H pair

% EV: eigenvalue recorded through out the process
% flag: flag = 1 when there is any decrease in ev
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% Input:

% signal_length: number of points in the signal.
% deltaT : sampling time

% Bd: Doppler freq

% beta: weight number [0,1]

% xi = [ phi_1 xi_1]

h [ phi_2 xi 2]

h [ phi_3 xi_3]

% [ phi_4 =xi_4]

A :

% phi_i is the delay, and xi_i is the channel gain for path i

% omega: bandwidth in angular speed
% K: span of the random variable
% mu: synchronization delay

% 0, delta
% 1, uniform
% 2, Gaussian

% N: number of iterations

sxi = xi;

smxi = max(sxi(:,1));
hxi=[-1*xi(:,1) xi(:,2)1;
hmxi = min(hxi(:,1));
EV = [I;

r = ones(signal_length,1);

WO = zeros(signal_length,1);
h = zeros(signal_length,1);
Z1 = floor(signal_length/4);

Z = zeros(Z1,1);

s = [Z;randn((signal_length-2%Z1),1);Z]; 4 leave room for SPmu and shifts
s = normal_v(s,deltaTl);

si = s;

for n = 1:N,

fprintf (’\nNumber of iteration:%d\n’,n);
s = SPmu(s,K,mu);
[h,hev] = Maxeig_p_method(r,s,sxi,smxi,W0,0);
h = normal_v(h,deltaT);
hev = h’#*Rxb(r,s,sxi,smxi,W0,0,h);
if hev < oldev,
flag = 1
end
oldev = hev;
h = SPmu(h,K,mu);
[s,sev] = Maxeig_p_method(r,h,hxi,hmxi,W0,0);
s = normal_v(s,deltaT);
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sev = s’#Rxb(r,h,hxi,hmxi,W0,0,s);
if sev < oldev,
flag = 1
end
oldev = sev;
EV = [EV; sev hev];
SH = [s hl;
end
EV = EVxdeltaT*deltaT;

Algorithm 5

function [MaxSH,pe30] =
algpairpe30(signal_length,deltaT,Bd,beta,xi,omega,K,mu,Nl,NQ)

% [MaxSH,pe30] = algpairpeSO(signal_length,deltaT,Bd,beta,xi,omega,K,mu,Nl,N2)
)

A

% Output:

h

%

% Input:
% signal_length: number of points in the signal.

% deltaT : sampling time
% beta: weight number [0,1]

% xi = [ phi_1 xi_1]

% [ phi_2 xi_ 2]

% [ phi_3 xi_3]

A [ phi_4 xi_4]

% :

% phi_i is the delay, and xi_i is the channel gain for path i

% omega: bandwidth in angular speed
% K: span of the random variable
% mu: synchronization delay

% 0, delta
% 1, uniform
% 2, Gaussian

% Ni: number of time using random initial vector
Y% N2: number of iterations for each initial vector

sxi = xi;

smxi = max(sxi(:,1));
hxi=[-1*xi(:,1) xi(:,2)]1;
hmxi = minChxi(:,1));

EV = [1;

oldev =0;

flag = 0;

SH =[1;

r = Cal_r(beta,Bd,signal_length,deltaT);%autocorrelation function of the channel
r0 = Cal_r(0,Bd,signal_length,deltaT);
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W = Cal_W(beta,omega,signal_length,deltaT); %2bw sinc(2w(tau-lambda))
WO = zeros(size(W));
if beta ==
IV = W; %doesn’t matter
else
IW = -9.091%W/beta;
IW(1) = IW(1) + 61500620; Y% 10%(1.626e-7) " (-1);

IW = betaxIVW;
end
for n = 1:N1,

fprintf (’ \nNumber of iteration:%d\n’,n);
zeros(signal_length,1);

zeros(Z1,1);

randn((signal_length),1); %
normal_v(h,deltaT);

SPmu(h,K,mu) ;

[s0,e01] = Maxeig_p_method(r,h,hxi,hmxi,¥,0);
s0 = normal_v(s0,deltaTl);

[s1,e02] = Mineig_cg_method(r,h,hxi,hmxi,IW,10);
s1 = normal_v(sil,deltal);

mperr = 1;

f= 2 = S = S
oW onou

for n2 = 1:N2
fprintf(’\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b’);
fprintf (’ \b\b\b\b\b\b\b\b\b\b\b\b\b\b\bN1:%d N2:%d Mpe:%f’,n,n2,mperr);
s = SPmu(s0,K,mu);
[h00,ehOmax] = Maxeig_p_method(r,s,sxi,smxi,W,0);
[b10,ehOmin] = Mineig_cg_method(r,s,sxi,smxi,IW,10);

s = SPmu(s1,K,mu);
[hii,ehimax] = Maxeig_p_method(r,s,sxi,smxi,W,0);
[hO1,ehimin] = Mineig_cg_method(r,s,sxi,smxi,IW,10);

hO_new = h00 + hO1;
hi_new = h10 + hil;
h0 = normal_v(hO_new,deltaTl);
hl = normal_v(hl_new,deltaT);

h = SPmu(h0,K,mu);
[s00,esOmax] = Maxeig_p_method(r,h,hxi,hmxi,W,0);
[s10,esOmin] = Mineig_cg_method(r,h,hxi,hmxi,IW,lO);

h = SPmu(hi,K,mu);
[s11,esimax] = Maxeig_p_method(r,h,hxi,hmxi,W,0);
{s01,esimin] = Mineig_cg_method(r,h,hxi,hmxi,IW,10);

sO_new = s00 + s01;
sl_new s10 + sl1;
s0 = normal_v(sO_new,deltaT);
s1 = normal_v(sl_new,deltaT);
sh = [sO s1 hO hi];
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% keep the one with smaller P(e) at 30dB
nperr = perr(sh,rO,sxi,smxi,WO,K,mu,30,de1taT);
if mperr > nperr
MaxSH(:,:,n) = sh;
pe30(n) = nperr;
mperr = nperr;
end
end

P(e) for Quadratic Receiver

func
% Le
% SH
% xi
A
%
%
YA
%

% mx

DN =
Cco =
Cl =
MO
M1

s =
MO =

MO =
s =
M1l =

M1 =
H =

PO =
P1 =

tion [err] = perr(SH,r,xiphi,mxiphi,W,K,mu,SNR,deltaT)
rr] = perrpair(SH,R,XiPhi,SNR)
= [s0 s1 hO hi]
phi = [ phi_1 xi_1]
[ phi_2 xi_2]
[ phi_3 xi_3]
[ phi_4 xi_4]

phi_i is the delay, and xi_i is the channel gain for path i
iphi: max delay

2;

zeros(2,2);

zeros(2,2);
zeros(2,2);
zeros(2,2);

= zeros(2,2);
= zeros(2,2);
= normal_v(SH(:,1),deltaTl);

normal_v(SH(:,2),deltaT);

= normal_v(SH(:,3),deltaT);

normal_v(SH(:,4),deltaT);

= s0*sign(s0’*h0);
= si*sign(s1’*hl);

SPmu(s0,K,mu) ;
[hO’ *Rxb(r,s,xiphi,mxiphi,W,0,h0) hO’ *Rxb(r,s,xiphi,mxiphi,W,0,h1);
h1’*Rxb(r,s,xiphi,mxiphi,W,0,h0) h1’*Rxb(r,s,xiphi,mxiphi,W,0,h1)];
MO*deltaT"2;
SPmu(sl,K,mu);
[hO’*Rxb(r,s,xiphi,mxiphi,W,0,h0) hO’*Rxb(r,s,xiphi,mxiphi,W,0,h1);
h1’*Rxb(r,s,xiphi,mxiphi,W,0,h0) h1’*Rxb(r,s,xiphi,mxiphi,W,0,h1)];
MixdeltaT"2;
[1 hO’*hi*deltaT; hl’*hO*deltaT 1];
0;
0;

N2 = 10~ (-SNR/10); %N/2
CO = MO + N2xH;

Cl =
xi=

M1 + N2xH;
log(det (CO)/det(C1));




Q = inv(C1)-inv(CO);
a = eig(COxQ);
b = eig(C1xQ);
if xi <= 0,
for I = 1:DN,

temp = temp*(1/(1-(a(n)/a(I))));
end
end
temp = temp*exp(—xi/a(l));
PO = PO + temp;
end
temp = 1;
if b(I) < 0,
for n = 1:DN,
if n "= I,
temp = tempx(1/(1-(b(n)/b(1))));
end
end
temp = temp*exp(-xi/b(I));
P1 = P1 + temp;
end
end
err = 0.5%x(1+P0-P1);
else
for I = 1:DN,
temp = 1;
if a(I) > O,
for n = 1:DN,
if n "= I,
temp = temp*(1/(1-(a(n)/a(I))));
end
end
temp = tempxexp(-xi/a(I));
PO = PO + temp;
end
temp = 1;
if b(I) > O,
for n = 1:DN,
if n "= 1I,
temp = temp*(l/(l—(b(n)/b(I))));
end
end
temp = tempxexp(-xi/b(I));
P1 = P1 + temp;
end
end
err = 0.5%x(1-PO+P1);
end
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Power Method

function [V,ev] = Maxeig_p_method(r_alpha,s,xi,mxi,w,kk)

Y [V,ev] = Maxeig_p_method(r_alpha,s,xi,mxi,w,kk)

h

Y% This function returns the largest eigenvalue with the corresponding
% eigenvector using power method

%

% r_alpha: R_\alpha

% xi=[phi_l xi_1]

h [ phi_2 xi_2]
% [ phi_3 xi_3]
h [ phi_4 xi_4]
% :
% phi_i is the delay, and xi_i is the channel gain for path i

% mxi: the largest delay

% W : 2\beta\omega\sinc(2\pi\omega\delta T n)

Y kk : a constant that allow us to manipulate the eigenvalues of the
% kernel

h

randn(size(r_alpha));

V/norm(V) ;
_old = V;

arg = 1;

i=20;

while (arg > 1le-6) & (i<50)
i = i+1;
V = Rxb(r_alpha,s,xi,mxi,W,kk,V);
V = V/norm(V);
arg = norm(V-V_old);
fprintf(’\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b’);
£printf (*\b\b\b\b\b\b\b\bMaxeig_p_method:%d %f’,i,arg);
V_old = V;

end

b= Rxb(r_alpha,s,xi,mxi,W,kk,V);

ev = norm(b) - kk;

< <<
1l

Conjugate Gradient Method

function [V,ev] = Mineig_cg_method(r_alpha,s,xi,mxi,w,kk)

% [V,ev] = Mineig_cg_method(r_alpha,s,xi,mxi,w,kk)

L/

/)

% Using Conjugate Gradient Method. This method applies to symmetric
Y% matrix R which solves Rx = b.

Y% P.311 of James W. Demmel "Applied numerical linear algebra"

%

Y, This program returns the smallest eigenvalue and the corresponding
% eigenvector of R

%

% r_alpha: R_\alpha

R
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v xi= [ phi_t xi_1]

% [ phi_2 xi_ 2]
% [ phi_3 xi_3]
% [ phi_4 xi_4]
A :
% phi_i is the delay, and xi_i is the channel gain for path i

% mxi: the largest delay

% W o 2\beta\omega\sinc(2\pi\omega\de1ta T n)

% kk : a constant that allow us to manipulate the eigenvalues of the
% kernel

V = zeros(size(r_alpha));
Vold = V;
b = randn(size(r_alpha));
b = b/norm(b);
r = by
p="b;
flag = 1;
th = le-5;
arg = 1;
i=0;
while (i<30) & (arg > le-5)
i=1i+1;
k=0;
while flag,
k=k+1;
z Rxb(r,alpha,s,xi,mxi,w,kk,p);
v = (r'*xr)/(p’*2);
V =V + v¥p;
rnew = T - V2]
temp = norm(rnew);
fprintf(’\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b’);
fprintf(’\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\bMineig_cg_method:’);
fprintf(’%d %d %7 ,1,k,temp) ;
if temp < th
flag = 0;
end
mu = (rnew’*rnew)/(r’*r);
T = rnewv;
p = T + mux*p;
end
Vv = V/norm(V);
arg = norm(V-Vold);

Vold = V;
th = th/1.25;
r=1V;
p=Y;
flag = 1;
end

y = Rxb(r_alpha,s,xi,mxi,W,kk,V);
ev = norm(y)-kk;
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Land-Mobile Model Autocorrelation Function

function r = Cal_r(beta,Bd,n,deltaT)

%= Cal_r(beta,Bd,n,deltaT)

%

Y, This program calculates the land-mobile fading channel autocorrelation
Y coeffs.

A

h

Y% Run the composite mapping algorithm to make a positive sequence

Y, Modified from Dr Moon’s COMPMAP .m

n=n/2;

N =4%n; gq=n-1; t= 0:q)7;

arg = 2xpixBd*deltaT

h = besselj(0,arg*t);

x = [h; zeros (N-2xq-1,1); h(g+i:-1:2)1; % Conjugate even extension

% Run the composite-mapping algorithm
converged = 0; numiter = 0; maxiter = 2000;
while (numiter < maxiter)
numiter = numiter+1;
X = real (££t(x));
idx = X < 0;
X(idx) = zeros(size(X(idx))); Y, Enforce Property 2: positive sequence
newx = real (ifft(X));
newx(q+2:N-q) = zeros(N-2%q-1,1); % Enforce Property 1: length 2g+1
if (norm(x-newx) < 1.e-10) Y check for convergence
break;
end
X = nevx;
end
=x(1:(q*1));
=h/h(1);
a = zeros(n,1);
r=[h;al;
r=rx(1-beta);

Frequency Containment

function h = Cal_W(beta,omega,n,deltaT)

% h = Cal_W(beta,omega,n,deltaT)

%

% This program calculates the coeffs of sinc function for freq
% containment.

%

“h= 2\beta\omega\sinc(2\pi\omega\de1ta T n)

9,

A

Y, Run the composite mapping algorithm to make a positive sequence
Y, Modified from Dr Moon’s COMPMAP.m
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N = 4%n; gq=n1n-1; *t= (0:9)7;

argl = 2*betaxomega;

arg2 = 6.28319*omega*deltaT;

h = sinc(arg2xt);

x = [h; zeros (N-2%q-1,1); h(q+1:—1:2)]; % Conjugate even extension
% Run the composite-mapping algorithm

converged = 0; numiter = 0; maxiter = 2000;
while (numiter < maxiter)

numiter = numiter+1;
X = real(££t(x));
idx = X < 03
X(idx) = zeros (size(X(idx))); v, Enforce Property 2: positive sequence
newx = real Gfft(X));
newx(q+2:N-q) = zeros(N-2%q-1,1); % Enforce Property 1: length 2q+1
if (norm(x-newx) < 1.e-10) % check for comvergence
break;
end
X = newx;

end
h=x(1:(q+1));

h
h

= h/h(1);
= argl*h;

Synchronization Delay Distribution

function S = SPmu(s,K,mu)

h
h
h
)
%
%
)
)
%

function S = SPmu (s ,mu)

This program is used to calculate the effective signal/filter
according to synchronization delay distribution

mu: O->delta, 1->uniform, 2->Gaussian
K: span of the random variable

S[n] = sum k s (n-k) pmu (k)

if mu ==

S = s;

else

N
S

size(s,1);
zeros(N,1);
M (K-1)/2;
A = zeros(M,1);
Sa = [A;s;Al;
if mu ==
pmu = ones (K,1);

else
kx = 1:K;

pmu = gaussian_pdf((?.38/K)*(k—M-1));

end
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pmu = pmu/sum(pmu) ;

for n=1:N
for k = 1:K
S(n) = S (n)+Sa(n+K-k)*pmu(k) ;
end
end
end

Gaussian Density Function

function pdf = gaussian_pdf (x)

% pdf = gaussian_pdf (x)

%

¥ This function returns the value of Gaussian distribution
% with zero mean and unit variance

h

[r, c] = size(x);

S =T % C;

x = reshape(x, 1, 8);
pdf = zeros(1, 8);

k = find(isnan(x));

if (any(k))
pdf (k) = NaN * ones (1, length(k));
end
k = find ("isinf(x));
if (any(k))
pdf (k) = (2 * pi)~(- 1/2) * exp(- x(k) .~ 2/ 2);
end

pdf = reshape(pdf, T, c);

Vector Normalization

function [V]=norma1_v(w,de1taT)

Y% [Vl=normal_v(W)

%

% Both V, and W are (column or row) sample vectors of a
% continuous function, where V is an normalized version

% of W such that |Vl = 1 (in continuous sense)
yA

D = size(W);

if D(1) ==

V= W./sqrt(W*W’*deltaT);
elseif D(2) ==

V = W./sqrt (W’ xWxdeltal);
else
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C Codes

Matrix-Vector Multiplication

/***************************************************************************
v = Rxb(r_alpha,s,xi,mxi,w,k,b)

Do the matrix_vector multiplication:
[(1-beta)R_alpha o Psi(\tau,\lambda) + beta*w*sinc[w(\tau—\lambda)]+k1]*b
= Rxb

We have:
R_alpha(m,n) = r_alpha(im-nl)
xi = [ phi_t xi_1]
[ phi_2 xi.2]
[ phi_3 xi_3]
[ phi 4 xi_4]

phi_i is the delay, and xi_i is the channel gain for path i
mxi is the largest delay

Psi(m,n) = \sum_i Ixi_il~2 s(m-\phi_i)s(n-\phi)
W) = wxsinc[w(n)]

V(n) = \sum_m R{m,n)*b(m)
= \sum_m[(l—beta)r_alpha(Im—nl)*
{\sum_i Ixi_il"2 s(m—\phi_i)s(n—\phi) }
+ beta*W(|m-n|)+k+delta(m ,n)1¥b(m)

beta and 1-beta are absorbed in r_alpha and W respectively before
this function is called

***************************************************************************/
#include <math.h>
#include "mex.h"

/* Input Arguments */

#define ir_alph  prhs(0]
#define is prhs[1]
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#define ix prhs[2]
#define imxi prhs (3]
#define iW prhs[4]
#define ik prhs (5]
#define ib prhs[6]

/* Output Arguments x/
#define ov plhs[0]

void mexFunction( int nlhs, mxArray *plhs(],
int nrhs, const mxArray*prhs(] )
{
double *r_alpha,*s,*xi,*in,*mxi,*W,*k,*b,*v,*vn,*S,*SS;
int i,n,m,M,N,I;
int sshift, mphi, shift;
double R, temp;
mxArray *Sarray;

r_alpha = mxGetPr (ir_alpha);
s = mxGetPr(is);

xi = mxGetPr(ixi);

mxi = mxGetPr(imxi);

W= mxGetPr(iW);

k = mxGetPr(ik);
b = mxCGetPr(ib);
M = mxGetM(ib);
N=MNM;

ov = mereateDoubleMatrix(N,1,meEAL);
v = mxGetPr(ov);

for (n=0;n<N;n++) *(v+n)=0;

I = mxGetM(ixi);

xiI = xi+I;

sshift = 0;

/% Prepare for allowing shifts in s for path delays */
if(I1=1)1
if (*mxi > 0){
sshift = *mxi;
shift = N+sshift;
Sarray = mereateDoubleMatrix(shift,1,meEAL);
S = mxGetPr(Sarray);
for(n=0;n<sshift;n++) *(S+n) = 0;
for(m=0;n<shift;n++,m++) *(S+n) = *(s+m);
}
else{
shift = N - *mxi;
Sarray = mereateDoubleMatrix(shift,1,meEAL);
S = mxGetPr(Sarray);
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for (n=0;n<N;n++) *(S+n) = *(s+n);
for(;n<shift;n++) *(S+n) = 0;
¥
}
else{
Sarray = mereateDoubleMatrix(N,1,meEAL);
S = mxGetPr(Sarray);
for (n=0;n<N;n++) *(S+n) = *(s+n);

}

/* Divided into three parts to avoid abs(m-n) */
for (n=0;n<N;n++){

vn = vHn;
for (m=0;m<n;m++){
R = 0;

for (i=0;i<I;i++H){
shift = sshift - *(xi+i);
88 = S+shift;
temp = *(xiI+1)**(SS+m);
temp = temp*(SS+n);
R = R + temp;

}

shift = n - m;

R = R¥x(r_alpha+shift);

R = R + *(W+shift);

R = R#x(b+m);

xyn = *vn + R;

}
}

for (n=0;n<N;n++){

vn =V + 1}

R = 0;

for(i=0;i<I;i++){
shift = n + sshift - *(xi+i);
8S = S+shift;
temp = *SS**SS 5 ;
temp = tempk* (xil+i);
R = R + temp;

R#* (r_alpha);
=R + *x(W);

R +xk;

R¥* (b+n) ;

vn = *vn + R;

¥ W W W o
!

}

for (n=0;n<N;n++){
vn = vin;
for (m=n+1;m<M;m++){
R = 0;



121

for (i=0;i<I;i++){
shift = sshift - *(xi+i);
SS = S+shift;
temp = *(xil+i)**(SS+m);
temp = temp**(SS+n);
R =R + temp;

}

shift = m - n;

R = R#x(r_alphat+shift);
R = R + *(W+shift);
R = Rxx(b+m);
*yn = *vn + R;
}
}

mxDestroyArray(Sarray) ;

return;

)



